• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.026 seconds

An Energy-efficient Pair-wise Time Synchronization Protocol for Wireless Networks (에너지 효율적인 무선 네트워크용 상호 시각 동기화 프로토콜)

  • Bae, Shi-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.10
    • /
    • pp.1808-1815
    • /
    • 2016
  • TPSN(Timing-sync Protocol for Sensor Networks), the representative of time synchronization protocol, has been already developed to provide time synchronization among nodes in wireless sensor networks. Even though the TPSN's method has been referenced by so many other time synchronization schemes for resource-constrained networks like wireless sensor networks or low power personal area networks, it has some inefficiency in terms of power consumption and network-wide synchronization time (or called convergence time). The main reason is that each node in TPSN needs waiting delay to solve the collision problem due to simultaneous transmission among competing nodes, which causes more power consumption and longer network convergence time for a network-wide synchronization. In this paper an improved scheme is proposed by changing message exchange method among nodes. The proposed scheme not only shortens network-wide synchronization time, but also reduce collision traffic which lead to needless power consumption. The proposed scheme's performance has been evaluated and compared with an original scheme by simulation. The results are shown to be better than the original algorithm used in TPSN.

Landslide prediction system by wireless sensor network (무선센서 네트워크를 이용한 산사태 모니터링 기초기술 연구)

  • Kim, Hyung-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.191-195
    • /
    • 2007
  • Recently, landslides frequently happen at a natural slope during period of intensive rainfall. With rapidly increasing population of steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is developed. The system is focused to debris flows which happen frequently during periods of intensive rainfall at steep slopes in Kangwondo. This system is based on the wireless sensor network that is composed of sensor nodes, gateway, and server system. Sensor nodes that are composed of sensing part and communication part are newly developed to detect sensitive ground movement. Sensing part is designed to measure tilt angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15. I) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of laboratory tests is performed at a small-scale earth slope supplying rainfall by artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope failure starts. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs, and can be applied to ubiquitous computing city (U-City) that is characterized by disaster free.

  • PDF

On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

  • Yin, Bo;Zhou, Siwang;Zhang, Shiwen;Gu, Ke;Yu, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1931-1953
    • /
    • 2017
  • The reverse skyline query plays an important role in information searching applications. This paper deals with continuous reverse skyline queries in sensor networks, which retrieves reverse skylines as well as the set of nodes that reported them for continuous sampling epochs. Designing an energy-efficient approach to answer continuous reverse skyline queries is non-trivial because the reverse skyline query is not decomposable and a huge number of unqualified nodes need to report their sensor readings. In this paper, we develop a new algorithm that avoids transmission of updates from nodes that cannot influence the reverse skyline. We propose a data mapping scheme to estimate sensor readings and determine their dominance relationships without having to know the true values. We also theoretically analyze the properties for reverse skyline computation, and propose efficient pruning techniques while guaranteeing the correctness of the answer. An extensive experimental evaluation demonstrates the efficiency of our approach.

Indoor RSSI Characterization using Statistical Methods in Wireless Sensor Network (무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정)

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.457-461
    • /
    • 2007
  • In many applications, received signal strength indicator is used for location tracking and sensor nodes localization. For location finding, the distances between sensor nodes can be estimated by converting received signal's power into distance using path loss prediction model. Many researches have done the analysis of power-distance relationship for radio channel characterization. In indoor environment, the general conclusion is the non-linear variation of RSSI values as distance varied linearly. This has been one of the difficulties for indoor localization. This paper presents works on indoor RSSI characterization based on statistical methods to find the overall trend of RSSI variation at different places and times within the same room From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. This two factors are directly indicated by the two main parameters of path loss prediction model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. Using this relationship, the characterization for location estimation can be more efficient and accurate.

  • PDF

HDRE: Coverage Hole Detection with Residual Energy in Wireless Sensor Networks

  • Zhang, Yunzhou;Zhang, Xiaohua;Fu, Wenyan;Wang, Zeyu;Liu, Honglei
    • Journal of Communications and Networks
    • /
    • v.16 no.5
    • /
    • pp.493-501
    • /
    • 2014
  • Coverage completeness is an important indicator for quality of service in wireless sensor networks (WSN). Due to limited energy and diverse working conditions, the sensor nodes have different lifetimes which often cause network holes. Most of the existing methods expose large limitation and one-sidedness because they generally consider only one aspect, either coverage rate or energy issue. This paper presents a novel method for coverage hole detection with residual energy in randomly deployed wireless sensor networks. By calculating the life expectancy of working nodes through residual energy, we make a trade-off between network repair cost and energy waste. The working nodes with short lifetime are screened out according to a proper ratio. After that, the locations of coverage holes can be determined by calculating the joint coverage probability and the evaluation criteria. Simulation result shows that compared to those traditional algorithms without consideration of energy problem, our method can effectively maintain the coverage quality of repaired WSN while enhancing the life span of WSN at the same time.

Control Message Transmission Radius for Energy-efficient Clustering in Large Scale Wireless Sensor Networks (스케일이 큰 무선 센서 네트워크에서 에너지 효율적인 클러스터링을 위한 제어 메시지 전송반경)

  • Cui, Huiqing;Kang, Sang Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2020
  • Wireless sensor networks consist of a large number of tiny sensor nodes which have limited battery life. In order to maximize the network life span, we propose an optimal transmission radius, R, for control messages. We analyze the transmission radius as a function of the energy consumption of cluster head nodes and the energy consumption of member nodes to find the optimal value of R. In simulations we apply our proposed optimization of transmission range to LEACH-based single-hop and multi-hop networks to show that our proposed scheme outperforms other existing routing algorithms in terms of network life span.

A design of hybrid detection system with long term operating reliability in underwater (장기 동작 신뢰성을 고려한 수중 복합 탐지 시스템 설계)

  • Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • Recently, the systems using multiple sensors such as magnetic, acoustic and pressure sensor are used for detection of underwater objects or vehicles. Those systems have difficulty of maintenance and repair because they operate underwater. Thus, this paper describes a hybrid detection system with long term operating reliability. This has a multi-signal transmission structure to have a high reliability. First, a signal transmission & receiving part, which transfers data from underwater sensors to land and receive control message from land through optical cable, has 4 multi-path. Second, the nodes for signal transmission are connected dually each other with single-hop construction and sensors are connected to a couple of neighboring nodes. This enables the output signal to transmit from a node to the next node and the next but one node together. Also, the signal from a sensor can be transmitted to two nodes at the same time. Therefore, the system with this construction has high reliability in long term operation because it makes possible to transmit sensor data to another node which works normally although a transmission node or cable in system have some faults.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.

Landslide Detection using Wireless Sensor Networks (사면방재를 위한 무선센서 네트워크 기술연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

Correlation Distance Based Greedy Perimeter Stateless Routing Algorithm for Wireless Sensor Networks

  • Mayasala, Parthasaradhi;Krishna, S Murali
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.139-148
    • /
    • 2022
  • Research into wireless sensor networks (WSNs) is a trendy issue with a wide range of applications. With hundreds to thousands of nodes, most wireless sensor networks interact with each other through radio waves. Limited computational power, storage, battery, and transmission bandwidth are some of the obstacles in designing WSNs. Clustering and routing procedures have been proposed to address these concerns. The wireless sensor network's most complex and vital duty is routing. With the Greedy Perimeter Stateless Routing method (GPSR), an efficient and responsive routing protocol is built. In packet forwarding, the nodes' locations are taken into account while making choices. In order to send a message, the GPSR always takes the shortest route between the source and destination nodes. Weighted directed graphs may be constructed utilising four distinct distance metrics, such as Euclidean, city block, cosine, and correlation distances, in this study. NS-2 has been used for a thorough simulation. Additionally, the GPSR's performance with various distance metrics is evaluated and verified. When compared to alternative distance measures, the proposed GPSR with correlation distance performs better in terms of packet delivery ratio, throughput, routing overhead and average stability time of the cluster head.