• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.028 seconds

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Design and Implementation of TinyOS Supporting Sensor Transparency of Sensor Nodes (센서노드의 센서 투명성을 지원하는 TinyOS의 확장)

  • So, Sun-Sup;Eun, Seong-Bae;Kim, Byung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2127-2133
    • /
    • 2010
  • In this paper, we proposed an architecture for supporting sensor transparency in sensor node operating systems, design the standard APIs (Application Programming Interfaces) and sensor device abstraction to provide the sensor transparency and implemented the sensor transparency in the TinyOS, the most well known sensor node operating system. With the proposed sensor node operating system which can support the sensor transparency, application developers can develop the target applications independent to each sensor device by using the standard APIs provided by the sensor node operating system and the sensor device manufacturers also can develop sensor device drivers by using the standard hardware interfaces and HAL (Hardware Adaptation Layer) interfaces independent to the specific hardware platform of sensor nodes.

A Mobile-Sink based Energy-efficient Clustering Scheme in Mobile Wireless Sensor Networks (모바일 센서 네트워크에서 모바일 싱크 기반 에너지 효율적인 클러스터링 기법)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.1-9
    • /
    • 2017
  • Recently, the active research into wireless sensor networks has led to the development of sensor nodes with improved performance, including their mobility and location awareness. One of the most important goals of such sensor networks is to transmit the data generated by mobile sensors nodes. Since these sensor nodes move in the mobile wireless sensor networks (MWSNs), the energy consumption required for them to transmit the sensed data to the fixed sink is increased. In order to solve this problem, the use of mobile sinks to collect the data while moving inside the network is studied herein. The important issues are the mobility and energy consumption in MWSNs. Because of the sensor nodes' limited energy, their energy consumption for data transmission affects the lifetime of the network. In this paper, a mobile-sink based energy-efficient clustering scheme is proposed for use in mobile wireless sensor networks (MECMs). The proposed scheme improves the energy efficiency when selecting a new cluster head according to the mobility of the mobile sensor nodes. In order to take into consideration the mobility problem, this method divides the entire network into several cluster groups based on mobile sinks, thereby decreasing the overall energy consumption. Through both analysis and simulation, it was shown that the proposed MECM is better than previous clustering methods in mobile sensor networks from the viewpoint of the network energy efficiency.

A Forwarder Based Temperature Aware Routing Protocol in Wireless Body Area Networks

  • Beom-Su Kim;Ki-Il Kim;Babar Shah;Sana Ullah
    • Journal of Internet Technology
    • /
    • v.20 no.4
    • /
    • pp.1157-1166
    • /
    • 2019
  • A Wireless Body Area Network (WBAN) allows the seamless integration of miniaturized sensor nodes in or around a human body, which may cause damage to the surrounding body issue due to high temperature. Although various temperature aware routing protocols have been proposed to prevent temperature rise of sensor nodes, most of them accommodate single traffic transmission with no mobility support. We propose a Forwarder based Temperature Aware Routing Protocol (FTAR) that supports multiple traffic transmission for normal and critical data. Normal data is forwarded directly to the sink through forwarding nodes which are selected among mobile nodes attached to the arms and legs, while critical data is forwarded to the sink through static nodes attached to fixed body parts with no mobility. We conduct extensive simulations of FTAR, and conclude that FTAR has good performance in terms of hot spot generation ratio, hot spot duration time, and packet delivery ratio.

Method for Joining Mobile Nodes in Wireless Sensor Networks using Dynamic Hysteresis (무선 센서 네트워크에서 동적 히스테리시스 특성을 이용한 이동 노드의 가입 방법)

  • Lee, Jae-Hyung;Lee, Eung-Soo;Kim, Dong-Sung
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.68-76
    • /
    • 2011
  • In this paper, we propose a method for joining mobile nodes in wireless sensor networks using hysteresis features. It is possible to use static hysteresis, whereby joining and withdrawal are carried out repeatedly when a mobile node is located at boundary points. The energy consumption of the nodes can be effectively managed by a decrease in the response packets of the neighbors under the joining requests of the mobile nodes. However, static hysteresis causes a decrease in the joining rate. In order to increase the joining rate, dynamic hysteresis is used. To evaluate the performance of the proposed technique, the joining rate is investigated and analyzed. Simulation results show that the proposed method enables efficient joining according to the mobility of nodes in wireless sensor networks.

Modeling and Simulation of Fuzzy based Propagation Limiting Method for message routing in Wireless Sensor Networks (무선 센서 네트워크에서 메시지 라우팅을 위한 퍼지 기반 전달 영역 제한 기법의 모델링 및 시뮬레이션)

  • Chi, Sang-Hoon;Lee, Hae-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.29-39
    • /
    • 2006
  • Sensor networks consist of small nodes with sensing, computation, and wireless communications capabilities. A number of routing protocols to transmit the data between the base station and sensor nodes have been proposed. Intanagonwiwat et al. proposed the directed diffusion in which the base station sends interest messages and waits for data from the nodes in the specific regions. Since the directed diffusion propagates every interest message to whole nodes in the network, it causes energy dissipation of nodes. In this paper, we propose a novel data propagation method, which limits the data transmission area according to a threshold value for reducing the energy consumption in the network. A fuzzy logic is exploited to determine the threshold value by considering the energy and density of all the deployed nodes. The simulation models are designed and implemented based on DEVS formalism which is theoretically well grounded means of expressing discrete event simulation models.

  • PDF

A Routing Method Considering Sensed Data in Wireless Sensor Networks (무선 센서 네트워크에서 데이터 센싱을 고려한 라우팅 기법)

  • Song, Chang-Young;Lee, Sang-Won;Cho, Seong-Soo;Kim, Seong-Ihl;Won, Young-Jin;Kang, June-Gill
    • 전자공학회논문지 IE
    • /
    • v.47 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • It is very important to prolong the lifetime of wireless sensor networks by using their limited energy efficiently, since it is not possible to change or recharge the battery of sensor nodes after deployment. LEACH protocol is a typical routing protocol based on the clustering scheme for the efficient use of limited energy. It is composed of a few clusters, which consist of head nodes and member nodes. Though LEACH starts from the supposition that all nodes have data transferred to a head, there must be some nodes having useless data in actual state. In this paper we propose a power saving scheme by making a member node dormant if previous sensed data and current data is same. We evaluate the performance of the proposed scheme in comparison with original clustering algorithms. Simulation results validate our scheme has better performance in terms of the number of alive nodes as time evolves.

A Backup Node Based Fault-tolerance Scheme for Coverage Preserving in Wireless Sensor Networks (무선 센서 네트워크에서의 감지범위 보존을 위한 백업 노드 기반 결함 허용 기법)

  • Hahn, Joo-Sun;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.4
    • /
    • pp.339-350
    • /
    • 2009
  • In wireless sensor networks, the limited battery resources of sensor nodes have a direct impact on network lifetime. To reduce unnecessary power consumption, it is often the case that only a minimum number of sensor nodes operate in active mode while the others are kept in sleep mode. In such a case, however, the network service can be easily unreliable if any active node is unable to perform its sensing or communication function because of an unexpected failure. Thus, for achieving reliable sensing, it is important to maintain the sensing level even when some sensor nodes fail. In this paper, we propose a new fault-tolerance scheme, called FCP(Fault-tolerant Coverage Preserving), that gives an efficient way to handle the degradation of the sensing level caused by sensor node failures. In the proposed FCP scheme, a set of backup nodes are pre-designated for each active node to be used to replace the active node in case of its failure. Experimental results show that the FCP scheme provides enhanced performance with reduced overhead in terms of sensing coverage preserving, the number of backup nodes and the amount of control messages. On the average, the percentage of coverage preserving is improved by 87.2% while the additional number of backup nodes and the additional amount of control messages are reduced by 57.6% and 99.5%, respectively, compared with previous fault-tolerance schemes.

Interference Aware Multipath Routing in Multi-rate Wireless Sensor Networks

  • Lee, Kang Gun;Park, Hyung Kun
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.8
    • /
    • pp.909-914
    • /
    • 2015
  • In wireless sensor networks, sensor nodes have a short transmission range and data is transferred from source to destination node using the multi-hop transmission. Sensor nodes are powered by battery and the link qualities are different, and the routing protocol in the wireless sensor network is one of the important technical issues. Multipath routing was proposed to reduce the data congestion and increase data throughput. In the multipath routing, however, each path can be interfered by the other path, and it can aggravate network performance. In this paper, we propose the multipath routing scheme for multi-rate wireless sensor networks. The multipath routing selects transmission paths to minimize transmission delay and path interference.

Application of Sensor Network System using by RF Transceiver (RF송수신기를 이용한 센서네트워크시스템 구현)

  • Ahn, Shi-Hyun;Suh, Young-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.682-684
    • /
    • 2007
  • This paper deals the application of sensor network system to fabricate wireless nodes. This node includes a CPLD(XC2C256), FPGA(XC3S1000) a RF module(Bim-433-F), a Hall Sensor and I also develop the CPLD(EPGA) controlling with Verilog-HDL using ISE. The network was consisst of a PC, a Sink node as a gateway, and three Sensor nodes. This sensor network can reaches 40 m with RF interface using by multi-path network.

  • PDF