• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.032 seconds

Environment Monitoring System Using Autonomous Mobile Robot (자율 주행 로봇을 이용한 환경 모니터링 시스템)

  • Jeong, Hye-jin;Kim, Won-jung;Son, Cheol-su;Cho, Byung-lok;Yang, Su-yeong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1038-1041
    • /
    • 2009
  • Wireless sensor network with wireless sensor nodes which equipped with temperature, humidity, illumination, or soil sensor etc, get a natural environment information and analyze and utilized variety way.these network consist of a short distance wireless communication and multi-hop techniques with multiple nodes equipped low-power wireless transceivers. so the characteristic of the data collected through the wireless sensor network is obtained from compact nodes within a limited range. However, to get a data from the wireless sensor nodes scattered in a wide range, this network needs a wireless transceiver that consumes many power or a lot of intermediate nodes. then, merit of low cost and low electrical energy decrease. To solve this problem, this paper offers environment monitoring system using autonomous mobile robot that collect data from groups of each sensor networks scattered widely.

  • PDF

Energy Efficient Cluster Head Selection and Routing Algorithm using Hybrid Firefly Glow-Worm Swarm Optimization in WSN

  • Bharathiraja S;Selvamuthukumaran S;Balaji V
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2140-2156
    • /
    • 2023
  • The Wireless Sensor Network (WSN), is constructed out of teeny-tiny sensor nodes that are very low-cost, have a low impact on the environment in terms of the amount of power they consume, and are able to successfully transmit data to the base station. The primary challenges that are presented by WSN are those that are posed by the distance between nodes, the amount of energy that is consumed, and the delay in time. The sensor node's source of power supply is a battery, and this particular battery is not capable of being recharged. In this scenario, the amount of energy that is consumed rises in direct proportion to the distance that separates the nodes. Here, we present a Hybrid Firefly Glow-Worm Swarm Optimization (HF-GSO) guided routing strategy for preserving WSNs' low power footprint. An efficient fitness function based on firefly optimization is used to select the Cluster Head (CH) in this procedure. It aids in minimising power consumption and the occurrence of dead sensor nodes. After a cluster head (CH) has been chosen, the Glow-Worm Swarm Optimization (GSO) algorithm is used to figure out the best path for sending data to the sink node. Power consumption, throughput, packet delivery ratio, and network lifetime are just some of the metrics measured and compared between the proposed method and methods that are conceptually similar to those already in use. Simulation results showed that the proposed method significantly reduced energy consumption compared to the state-of-the-art methods, while simultaneously increasing the number of functioning sensor nodes by 2.4%. Proposed method produces superior outcomes compared to alternative optimization-based methods.

Improvement of Energy Efficiency of LEACH Protocol for Wireless Sensor Networks (무선센서 네트워크를 위한 LEACH 프로토콜의 에너지 효율 향상 방안)

  • Lee, Sang-Hoon;Suk, Jung-Bong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2B
    • /
    • pp.76-81
    • /
    • 2008
  • LEACH (Low Energy Adaptive Clustering Hierarchy) has been proposed as a routing protocol with a hierarchical structure, in order to achieve the energy efficiency that is of primary importance in the wireless sensor networks. A wireless sensor network adopting LEACH is composed of a few clusters, each of which consists of member nodes that sense the data, and head nodes that deliver the collected data from member nodes to a sink node that is connected to a backbone network. A head node in a cluster allocates TDMA slots to its member nodes without taking into account whether they have data to transmit or not, thus resulting in inefficiency of energy usage of head node that remains in active mode during the entire round time. This motivates us to propose a scheme to improve the energy efficiency of LEACH, by assigning TDMA slots only to those member nodes who have data to send. As a result, the head node can remain sleep during the period of no data transmission from member nodes, leading to the substantial energy saving. By using the ns-2 simulator, we evaluate the performance of the proposed scheme in comparison with the original LEACH. Experimental results validate our scheme, showing a better performance than original LEACH in terms of the number of outliving nodes and the quantity of energy consumption as time evolves.

TASL: A Traffic-Adapted Sleep/Listening MAC Protocol for Wireless Sensor Network

  • Yang, Yuan;Zhen, Fu;Lee, Tae-Seok;Park, Myong-Soon
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.39-43
    • /
    • 2006
  • In this paper, we proposed TASL-MAC, a medium-access control (MAC) protocol for wireless sensor networks. In wireless sensor networks, sensor nodes are usually deployed in a special environment, are assigned with long-term work, and are supported by a limited battery. As such, reducing the energy consumption becomes the primary concern with regard to wireless sensor networks. At the same time, reducing the latency in multi-hop data transmission is also very important. In the existing research, sensor nodes are expected to be switched to the sleep mode in order to reduce energy consumption. However, the existing proposals tended to assign the sensors with a fixed Sleep/Listening schedule, which causes unnecessary idle listening problems and conspicuous transmission latency due to the diversity of the traffic-load in the network. TASL-MAC is designed to dynamically adjust the duty listening time based on traffic load. This protocol enables the node with a proper data transfer rate to satisfy the application's requirements. Meanwhile, it can lead to much greater power efficiency by prolonging the nodes' sleeping time when the traffic. We evaluate our implementation of TASL-MAC in NS-2. The evaluation result indicates that our proposal could explicitly reduce packet delivery latency, and that it could also significantly prolong the lifetime of the entire network when traffic is low.

Strong Connection Clustering Scheme for Shortest Distance Multi-hop Transmission in Mobile Sensor Networks (모바일 센서 네트워크에서 최단거리 멀티홉 전송을 위한 강한연결 클러스터 기법)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.667-677
    • /
    • 2018
  • Since sensor networks consist of sensor nodes with limited energy resources, so efficient energy use of sensor nodes is very important in the design of sensor networks. Sensor nodes consume a lot of energy for data transmission. Clustering technique is used to efficiently use energy in data transmission. Recently, mobile sink techniques have been proposed to reduce the energy load concentrated on the cluster header near a sink node. The CMS(Cluster-based Mobile sink) technique minimizes the generation of control messages by creating a data transmission path while creating clusters, and supports the inter-cluster one-hop transmission. But, there is a case where there is no connectivity between neighbor clusters, it causes a problem of having a long hop data transmission path regardless of local distance. In this paper, we propose a SCBC(Strong connection balancing cluster) to support the path of the minimum number of hops. The proposed scheme minimizes the number of hops in the data transmission path and supports efficient use of energy in the cluster header. This also minimizes a number of hops in data transmission paths even when the sink moves and establishes a new path, and it supports the effect of extending the life cycle of the entire sensor network.

EETS : Energy- Efficient Time Synchronization for Wireless Sensor Networks (무선 센서 네트워크에서 에너지 효율성을 고려한 시간 동기 알고리즘)

  • Kim, Soo-Joong;Hong, Sung-Hwa;Eom, Doo-Seop
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.322-330
    • /
    • 2007
  • Recent advances in wireless networks and low-cost, low-power design have led to active research in large-scale networks of small, wireless, low power sensors and actuators, In large-scale networks, lots of timing-synchronization protocols already exist (such as NTP, GPS), In ad-hoc networks, especially wireless sensor networks, it is hard to synchronize all nodes in networks because it has no infrastructure. In addition, sensor nodes have low-power CPU (it cannot perform the complex computation), low batteries, and even they have to have active and inactive section by periods. Therefore, new approach to time synchronization is needed for wireless sensor networks, In this paper, I propose Energy-Efficient Time Synchronization (EETS) protocol providing network-wide time synchronization in wireless sensor networks, The algorithm is organized two phase, In first phase, I make a hierarchical tree with sensor nodes by broadcasting "Level Discovery" packet. In second phase, I synchronize them by exchanging time stamp packets, And I also consider send time, access time and propagation time. I have shown the performance of EETS comparing Timing-sync Protocol for Sensor Networks (TPSN) and Reference Broadcast Synchronization (RBS) about energy efficiency and time synchronization accuracy using NESLsim.

  • PDF

Mobile Sink Routing Scheme for Sensor Networks (센서 네트워크에서 이동 싱크 라우팅 기법)

  • Hwang, Mi-Young;Park, Sang-Joon;Khil, A-Ra;Kim, Byung-Gi
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.107-117
    • /
    • 2006
  • Wireless Sensor Network consists of sensor nodes and sink. A sink receives and processes signals created from sensor nodes. Many studies have been performed, since sensor network allows multiple nodes to run using a limited amount of energy, Most researches have focused on using fixed sink. However, in many cases, the sink has mobility effected by man, cars, and etc. This research proposes three methods for reducing the node's energy consumption which is applied the Grid method based on mobile sink. Most routing processes handled by the mobile sink and wireless sensor area is separated and operated respectively. So, this research allows decreasing the power costs. In addition, it also proposes methods using simulation to test the quality of the performance.

  • PDF

A Study of Key Node Search in Reconnaissance Surveillance Sensor Networks (감시정찰 센서네트워크에서 중요노드 탐색 연구)

  • Kook, Yoon-Ju;Kang, Ji-Won;Kim, Jeom-Goo;Kim, Kiu-Nam
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1453-1458
    • /
    • 2009
  • Sensor network for the human approach in a difficult area and a wide range of surveillance and the boundaries for the purpose and mission is the utilization significantly. In this paper we searched important nodes from the surveillance reconnaissance sensor network based on the virtual data. we generated data within the sensor's measurement range in the data transmitted from sensor nodes, and used PCA(Principle Component Analysis) for searching key node. If the important sensor node searched, and we can have easy management and establishing security measures when security problems is happened about nodes. This is for the sensor network in terms of effectiveness and cost-effectively and is directly connected with life span.

Key Establishment Mechanism for Clustered Sensor Networks Through Nodes' Location Estimation (노드 위치 예측을 통한 클러스터링 기반의 센서네트워크 키설정 메커니즘)

  • Doh, In-Shil;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.2
    • /
    • pp.165-172
    • /
    • 2010
  • Sensor network can be applied in many areas in our life, and security is very important in applying sensor network. For secure sensor communication, pairwise key establishment between sensor nodes is essential. In this paper, we cluster the network field in hexagonal shapes and preassign three different kinds of key information for each sensor according to its expected location. We adopt overlapped key string pool concept for our clustered network architecture and every node uses the part of sub-strings for setting up pairwise keys with all neighboring nodes in its own cluster and from different clusters according to respective position with small amount of information. Our proposal decreases the memory requirement and increases security level efficiently.

USN Metadata Managements Agent based on XMDR-DAI for Sensor Network (센서 네트워크를 위한 XMDR-DAI 기반의 USN 메타데이터 관리 에이전트)

  • Moon, Seok-Jae;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.247-249
    • /
    • 2014
  • Ubiquitous Sensor Network (USN) environments, sensors and sensor nodes, and coming from heterogeneous sensor networks consist of one another, the characteristics of each component are also very diverse. Thus the sensor and the sensor nodes to interoperability between metadata for a single definition, management is very important. For this, the standard language for modeling sensor SensorML (Sensor Model Language) has. In this paper, sensor devices, sensor nodes and sensor networks for information technology in the application stage XMDR-DAI -based metadata to define the USN. The proposed XMDR-DAI USN based store and retrieve metadata for a method for effectively agent technology. Metadata of the proposed sensor is based SensorML USN environment by maintaining interoperability 50-200 USN middleware or a metadata management system for managing metadata in applications can be utilized directly.

  • PDF