• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.03 seconds

Performance Analysis of Cooperative Localization Algorithm with Area Reduction Method (영역축소 기법을 이용한 협력위치추정 알고리즘의 성능분석)

  • Jeong, Seung-heui;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1053-1056
    • /
    • 2009
  • In this paper, we proposed a RSS based cooperative localization algorithm using area reduction mehood for wireless sensor networks, which can estimate the BN position. The proposed localization system monitoring all nodes estimates a position of BN, and calculates an intersection area with cooperative localization. From the results, we confirm that BN intersection area is reduced as the number of RN is increased. Moreover, the propose algorithm using 4 RNs is improved estimation performance than conventional method. Therefore, the cooperative localization algorithm with area reduction mehood provides higher localization accuracy than RSS based conventional method.

  • PDF

SPA-Resistant Signed Left-to-Right Receding Method (단순전력분석에 안전한 Signed Left-to-Right 리코딩 방법)

  • Han, Dong-Guk;Kim, Tae-Hyun;Kim, Ho-Won;Lim, Jong-In;Kim, Sung-Kyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.127-132
    • /
    • 2007
  • This paper proposed receding methods for a radix-${\gamma}$ representation of the secret scalar which are resistant to SPA. Unlike existing receding method, these receding methods are left-to-right so they can be interleaved with a left-to-right scalar multiplication, removing the need to store both the scalar and its receding. Hence, these left-to-right methods are suitable for implementing on memory limited devices such as smart cards and sensor nodes

On the Need for Efficient Load Balancing in Large-scale RPL Networks with Multi-Sink Topologies

  • Abdullah, Maram;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • Low-power and Lossy Networks (LLNs) have become the common network infrastructure for a wide scope of Internet of Things (IoT) applications. For efficient routing in LLNs, IETF provides a standard solution, namely the IPv6 Routing Protocol for LLNs (RPL). It enables effective interconnectivity with IP networks and flexibly can meet the different application requirements of IoT deployments. However, it still suffers from different open issues, particularly in large-scale setups. These include the node unreachability problem which leads to increasing routing losses at RPL sink nodes. It is a result of the event of memory overflow at LLNs devices due to their limited hardware capabilities. Although this can be alleviated by the establishment of multi-sink topologies, RPL still lacks the support for effective load balancing among multiple sinks. In this paper, we address the need for an efficient multi-sink load balancing solution to enhance the performance of PRL in large-scale scenarios and alleviate the node unreachability problem. We propose a new RPL objective function, Multi-Sink Load Balancing Objective Function (MSLBOF), and introduce the Memory Utilization metrics. MSLBOF enables each RPL node to perform optimal sink selection in a way that insure better memory utilization and effective load balancing. Evaluation results demonstrate the efficiency of MSLBOF in decreasing packet loss and enhancing network stability, compared to MRHOF in standard RPL.

A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

  • Su, Haoru;Yuan, Xiaoming;Tang, Yujie;Tian, Rui;Sun, Enchang;Yan, Hairong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4385-4399
    • /
    • 2021
  • The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

Research on Secure IoT Lightweight Protocols (사물인터넷용 경량 프로토콜 비교 연구)

  • Sunghyuck Hong
    • Advanced Industrial SCIence
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • The use of Internet of Things(IoT) in smart cities and smart homes is essential. The security of the sensor nodes, which are the core of the IoT, is weak and hacking attacks are severe enough to have a fatal impact on real life. This research is conducted to improve the security of the Internet of Things by developing a lightweight secure communication protocol for the Internet of Things, and to build a safe Internet of Things environment suitable for the era of the 4th Industrial Revolution. It contributes to building a safe and convenient smart city and smart home by proposing key management and identifier development to increase the confidentiality of communication and the establishment of an Internet authentication system.

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi;Ali Mirvakili;Hadi Safdarkhani;Sayed Alireza Sadrossadat
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.519-533
    • /
    • 2023
  • This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.

Analysis of Capacity for Bi-Directional Coding Applying Time Reversal Technique in Underwater Acoustic Channel (수중음향채널에서의 시역전 기법을 적용한 양방향 통신 방식의 용량 분석)

  • Kim, Hyeon-Su;Kwon, Yang-Soo;Yoo, Jae-Ho;Chung, Jae-Hak;Kim, Seong-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.6
    • /
    • pp.506-513
    • /
    • 2009
  • In this paper, we propose a bi-directional communication method applying time reversal technique in underwater acoustic channel in order to exchange data between sensor nodes with an available relay node. The proposed method reduces the conventional 4-step relaying procedure to 2-step and improves the system capacity. Moreover, it increases transmission range efficiently while the relay node can be implemented with low complexity. Simulation results demonstrate that the proposed scheme achieves 3.2 bps/Hz higher capacity than that of the conventional method at SNR 20 dB.

Key Re-distribution Scheme of Dynamic Filtering Utilizing Attack Information for Improving Energy Efficiency in WSNs (무선 센서 네트워크에서 에너지 효율성 향상을 위해 공격정보를 활용한 동적 여과 기법의 키 재분배 기법)

  • Park, Dong-Jin;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.113-119
    • /
    • 2016
  • Wireless sensor networks are vulnerable to an adversary due to scarce resources and wireless communication. An adversary can compromise a sensor node and launch a variety of attacks such as false report injection attacks. This attack may cause monetary damage resulting in energy drain by forwarding the false reports and false alarms at the base station. In order to address this problem, a number of en-route filtering schemes has been proposed. Notably, a dynamic en-route filtering scheme can save energy by filtering of the false report. In the key dissemination phase of the existing scheme, the nodes closer to the source node may not have matching keys to detect the false report. Therefore, continuous attacks may result in unnecessary energy wastage. In this paper, we propose a key re-distribution scheme to solve this issue. The proposed scheme early detects the false report injection attacks using initially assigned secret keys in the phase of the key pre-distribution. The experimental results demonstrate the validity of our scheme with energy efficiency of up to 26.63% and filtering capacity up to 15.92% as compared to the existing scheme.

Improved Real-time Transmission Scheme using Temporal Gain in Wireless Sensor Networks (무선 센서 망에서 시간적 이득을 활용한 향상된 실시간 전송 방안)

  • Yang, Taehun;Cho, Hyunchong;Kim, Sangdae;Kim, Cheonyong;Kim, Sang-Ha
    • Journal of KIISE
    • /
    • v.44 no.10
    • /
    • pp.1062-1070
    • /
    • 2017
  • Real-time transmission studies in wireless sensor networks propose a mechanism that exploits a node that has a higher delivery speed than the desired delivery speed in order to satisfy real-time requirement. The desired delivery speed cannot guarantee real-time transmission in a congested area in which none of the nodes satisfy the requirement in one hop because the desired delivery speed is fixed until the packet reaches the sink. The feature of this mechanism means that the packet delivery speed increases more than the desired delivery speed as the packet approaches closer to the sink node. That is, the packet can reach the sink node earlier than the desired time. This paper proposes an improved real-time transmission by controlling the delivery speed using the temporal gain which occurs on the packet delivery process. Using the received data from a previous node, a sending node calculates the speed to select the next delivery node. The node then sends a packet to a node that has a higher delivery speed than the recalculated speed. Simulation results show that the proposed mechanism in terms of the real-time transmission success ratio is superior to the existing mechanisms.

A Key Pre-distribution Scheme Using Double Hash Chain for Strong Security Strength of Wireless Sensor Node (무선 센서 노드의 강한 보안 강도를 위해 이중 해쉬 체인을 적용한 키 사전 분배 기법)

  • Jeong, Yoon-Su;Kim, Yong-Tae;Park, Gil-Cheol;Lee, Sang-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8C
    • /
    • pp.633-641
    • /
    • 2008
  • Since WSNs encounter attacks, such as jamming or eavesdropping without physical access occurs, security is one of the important requirements for WSNs. The key pre-distribution scheme that was recently researched for advance of security in WSNs distributes the keys and probability with the use of q-composite random key pre-distribution method, but there is a high probability that no key shared between sensor nodes, and it takes a lot of time and energy to find out the shared key. Therefore, it is not suitable for WSNs. In order to enhance stability of a node that plays a role of gateway without depending on probabilistic key, this paper proposesa key pre-distribution scheme combined with random key pre-distribution scheme and double hash chain. Since the proposed scheme can maintain a small storage place and strong security strengths, it is more efficient than the existing schemes with the same security strengths. In addition, since it uses a small size of key generation key set, it can reduce a great deal of storage overhead.