• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.027 seconds

Self-Identification of Boundary's Nodes in Wireless Sensor Networks

  • Moustafa, Kouider Elouahed;Hafid, Haffaf
    • Journal of Information Processing Systems
    • /
    • v.13 no.1
    • /
    • pp.128-140
    • /
    • 2017
  • The wireless sensor networks (WSNs) became a very essential tool in borders and military zones surveillance, for this reason specific applications have been developed. Surveillance is usually accomplished through the deployment of nodes in a random way providing heterogeneous topologies. However, the process of the identification of all nodes located on the network's outer edge is very long and energy-consuming. Before any other activities on such sensitive networks, we have to identify the border nodes by means of specific algorithms. In this paper, a solution is proposed to solve the problem of energy and time consumption in detecting border nodes by means of node selection. This mechanism is designed with several starter nodes in order to reduce time, number of exchanged packets and then, energy consumption. This method consists of three phases: the first one is to detect triggers which serve to start the mechanism of boundary nodes (BNs) detection, the second is to detect the whole border, and the third is to exclude each BN from the routing tables of all its neighbors so that it cannot be used for the routing.

An Energy-Efficient Topology Control Scheme based on Application Layer Data in Wireless Sensor Networks (응용 계층 정보 기반의 에너지 효율적인 센서 네트워크 토폴로지 제어 기법)

  • Kim, Seung-Mok;Kim, Seung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.9
    • /
    • pp.1297-1308
    • /
    • 2009
  • The life time of a wireless sensor network composed of numerous sensor nodes depend on ones of its sensor nodes. The energy efficiency operation of nodes, therefore, is one of the crucial factors to design the network. Researches based on the hierarchical network topology have been proposed and evolved in terms of energy efficiency. However, in existing researches, application layer data obtained from sensor nodes are not considered properly to compose cluster, including issue that nodes communicate with their cluster heads in TDMA scheduling. In this paper, we suggest an energy-efficient topology control scheme based on application layer data in wireless sensor networks. By using application layer data, sensor nodes form a section which is defined as the area of adjacent nodes that retain similar characteristics of application environments. These sections are further organized into clusters. We suggest an algorithm for selecting a cluster head as well as a way of scheduling to reduce the number of unnecessary transmissions from each node to its cluster head, which based on the degree and the duration of similarity between the node's data and its head's data in each cluster without seriously damaging the integrity of application data. The results show that the suggested scheme can save the energy of nodes and increase the life time of the entire network.

  • PDF

An Attribute-Based Naming Architecture for Wireless Sensor Networks (무선 센서 네트워크를 위한 속성 기반 네이밍 구조)

  • Jung, Eui-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.95-102
    • /
    • 2007
  • Recently, a lot of researchers focus on the sensor middleware that hide the complexity of application developments and provide the abstraction of functions to upper application layer. Although there we several factors to design sensor middleware, the attribute-based naming is considered to be an essential factor among them. However, most existing researches were not designed to reflect the characteristics of sensor networks and have the limitation of attribute-based query extension. This study adopts the concept of Virtual Counterpart to suggest the structure there attribute-based naming is supported by virtual sensor nodes of the middleware on the sink node. Unlike traditional data-centric middleware in which individual sensor nodes process attribute-based query, virtual sensor nodes mapped to physical sensor nodes are running on the middleware of the sink node and process attribute-based query as a proxy of the physical sensor. This approach enables attribute-based naming independent of physical infrastructure and easy extensibility.

  • PDF

An Efficient Energy Charging Scheme for Wireless Sensor Networks Using a Mobile Sink Capable of Wireless Power Transmission

  • Park, Kyoung nam;Yoon, Ikjune
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.1-9
    • /
    • 2019
  • In this paper, we propose the algorithms which determine 1) the efficient anchor-node visiting route of mobile sink in terms of energy supply and 2) the efficient energy amount to be charged to each anchor node, by using the information of each anchor node and the mobile sink. Wireless sensor networks (WSNs) using mobile sinks can be deployed in more challenging environments such as those that are isolated or dangerous, and can also achieve a balanced energy consumption among sensors which leads to prolong the network lifetime. Most mobile sinks visit only some anchor nodes which store the data collected by the nearby sensor nodes because of their limited energy. The problem of these schemes is that the lifetime of the anchor nodes can be shorten due to the increased energy consumption, which rapidly reduces the overall lifetime of WSN. This study utilizes a mobile sink capable of wireless power transmission to solve this problem, so a mobile sink can gather data from anchor nodes while charging energy to them. Through the performance verification, it is confirmed that the number of blackout nodes and the amount of collected data are greatly improved regardless of the size of the network.

Security Improvement of Authentication Method Using Transfer Agent in USN

  • Cho, Do-Eun
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.35-43
    • /
    • 2011
  • USN is a technology to detect human external environment. It is an important factor in buildinga ubiquitous computing environment. In this thesis, an authentication method was proposed to allow the sensor nodes, which have weak computing operation capability, to safely communicate with each other in USN and guarantee the anonymity of users for their privacy. In the proposed authentication method that takes into account the characteristics of sensor network, sensor nodes based on a symmetric key algorithm do not transfer keys directly, instead, they mix the random numbers received from AS to generate keys necessary for communications, having a master key and a pseudo-random number generator.In addition, in this thesis, TA was adopted to minimize the leakage of users' information, and a scheme through which virtual IDs received from AS are delivered to sensor nodes was applied to improve anonymity.

Semijoin-Based Spatial Join Processing in Multiple Sensor Networks

  • Kim, Min-Soo;Kim, Ju-Wan;Kim, Myoung-Ho
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.853-855
    • /
    • 2008
  • This paper presents an energy-efficient spatial join algorithm for multiple sensor networks employing a spatial semijoin strategy. For optimization of the algorithm, we propose a GR-tree index and a grid-ID-based spatial approximation method, which are unique to sensor networks. The GR-tree is a distributed spatial index over the sensor nodes, which efficiently prunes away the nodes that will not participate in a spatial join result. The grid-ID-based approximation provides great reduction in communication cost by approximating many spatial objects in simpler forms. Our experiments demonstrate that the algorithm outperforms existing methods in reducing energy consumption at the nodes.

  • PDF

Implementation of Intelligent Campus Vehicle Management System Using Wireless Sensor Nodes (무선 센서노드를 이용한 지능형 캠퍼스 차량 관리 시스템 구현)

  • Choi, Jun-Young;Yang, Hyun-Ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.193-196
    • /
    • 2007
  • Recent advancements of wireless communication technology and miniaturization technique enables the implementation of wireless sensor network(WSN) using smart sensors. In addition, the research on the application of WSN to various fields of our daily life is performing briskly[1]. In this paper, we described the implementation of campus vehicle management system using wireless sensor nodes as an application of WSN. To do this, we have investigated the functions of commercial wireless sensor nodes such as transmission power control and node identification. We also proposed the architecture and operation procedure for the real system implementation.

  • PDF

Limited Flooding Scheme in Mobile Sensor Networks

  • Lee, Ick-Soo;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1225-1230
    • /
    • 2015
  • Mobile Sensor Networks (MSN) is composed of a distributed collection of mobile sensor nodes, each of which has sensing, computation, communication and locomotion capabilities. Since the routing path can be broken when some nodes on the path move to other position, MSN may have a high rate of communication failure. So, MSN has to provide a means for low-cost and low-power routing to support mobility of sensor nodes. In this paper, a limited flooding scheme for routing in MSN is proposed to allow efficient energy utilization without requiring any complicated tasks for path maintenance.

A Routing Scheme for Reducing the Power Consumption of USN Nodes (USN 노드의 소비전력 절감을 위한 경로설정 기법)

  • Lee, Moon-Ho
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.2
    • /
    • pp.1-10
    • /
    • 2007
  • The ubiquitous computing system is expected to be widely utilized in digital home, logistics control, environment/disaster management, medical/health-care services and other applications. The ubiquitous sensor network (USN) is a key infra-structure of this system. Nodes in the USN are exposed to adverse environments and required to perform their missions with very limited power supply only. Also the sensor network is composed of much more nodes. In case some node consumes up its power capacity under a certain required level, the network topology should change and re-routing/ re-transmission of data is necessitated. Resultantly communication protocols studied for conventional wireless networks or ad-hoc networks are not suitable for the sensor network. Schemes should be devised to control the efficient usage of node power in the sensor network. This paper proposes a routing algorithm to enhance the efficiency of power consumption for USN node and analyzes its performance by simulation.

  • PDF

Energy-Aware Node Selection Scheme for Code Update Protocol (코드 업데이트 프로토콜에서 에너지 잔존량에 따른 노드선정 기법)

  • Lee, Seung-Il;Hong, Won-Kee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.5 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • As wireless sensor network are being deployed in a wide variety of application areas, the number of sensor nodes in a sensor filed becomes larger and larger. In the past, ISP (In-System Programming) method have been generally used for code update but the large number of sensor nodes requires a new code update method called network reprogramming. There are many challenging issues for network reprogramming since it can make an impact on the network lifetime. In this paper, a new sender selection scheme for network reprogramming protocol is proposed to decrease energy consumption for code update by minimizing overlapped area between sender nodes and reducing data contention. Simulation results show that the proposed scheme can reduce the amount of message traffic and the overall data transmission time.