• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.029 seconds

Distributed Archiving Protocol between the Medical Sensor Nodes for the Home Health Service (홈 헬스를 위한 메디컬 센서노드의 분산보관 프로토콜)

  • Lee, Young-Ho;Jang, Hee-Tae;Lee, Byung-Mun
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.1
    • /
    • pp.80-90
    • /
    • 2012
  • Medical data sampled through medical sensor nodes can provide services properly only when the data are not lost even during the fault of a home health gateway. The loss of medical data can be minimized if a sensor node, in which it is expected that there are the most saving spaces, is selected after medical sensor nodes tentatively conduct local save or communicate with each other during a fault when data cannot received. Furthermore, efficient saving techniques are necessary since the cycle for sampling information is different according to the type of medical data and a space for distributed saving is different for each apparatus. So, this research suggests an efficient distributed archiving protocol (DAP) for medical data sensor nodes, each of which has a diverse sampling cycle. In order to confirm the usefulness of DAP, DAP between sensor node and gateway was designed and materialized. An experiment was conducted using the materialized program and earned a high level of recovery rate (99.3%) and of accuracy rate, which confirms that sensor nodes can play their role during a temporary fault.

A study of data harvest in distributed sensor networks (분산 센서 네트워크에서 데이터 수집에 대한 연구)

  • Park, Sangjoon;Lee, Jongchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3421-3425
    • /
    • 2015
  • In sensor networks, sensor nodes are usually distributed to manage the networks in continuous unique area, however as by the network property nodes can be located in several areas. The data gathering of distributed nodes to several areas can be different with current continuous area. Hence, the distributed networks can be differently managed to the current continuous networks. In this paper, we describe the data gathering of sensor nodes in distributed sensor areas. It is possible that sensor nodes cannot instantly connect the mobile sink, and the node operation should be considered. The real time data sending to the instant connection scheme of mobile sink can be implemented, but the property of mobile sink should be considered for the sink connection of distributed areas. In this paper, we analyze the proposed scheme by the simulation results. The simulation results show that the overall lifetime to the periodic data gathering method is longer than the threshold method.

A Secure Key Distribution Scheme on Wireless Sensor Networks Using Dynamic Clustering Algorithms (동적 클러스터 알고리즘을 이용한 무선 센서 네트워크에서 안전한 키 분배 방법)

  • Cho, Dong-Min;Lee, Yeo-Jin;Chung, Il-Yong
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.2
    • /
    • pp.236-245
    • /
    • 2007
  • Wireless sensor networks consist of numerous nodes equipped with small-sized and limited calculation capacities and storage space as well as low-capacity batteries. Therefore, the key issue is to reduce energy consumption of sensor nodes in sensor network environment. To reduce energy consumption of sensor nodes, consideration must be given to decreasing frequency of messages transmitted by nodes. Also, considering network application, security of sensor networks is also considered important. Therefore, this study proposes a key distribution scheme in dynamic clustering model. The dynamic clustering model used for this scheme is very effective in extending life span of wireless sensor networks. The proposed scheme provides improved security compared to the existing key distribution scheme by applying grid-based key distribution scheme and allocating polynomial s hare to the nodes forming a cluster. Also, comparison was made with the previously proposed grid-based, location-based and cluster-based key distribution schemes to illustrate the advantages of the proposed scheme.

  • PDF

A Key distribution Scheme for Information Security at Wireless Sensor Networks (무선 센서 네트워크에서 정보 보호를 위한 키 분배 기법)

  • Kim, Hoi-Bok;Shin, Jung-Hoon;Kim, Hyoung-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.51-57
    • /
    • 2009
  • Wireless sensor networks consist of numerous sensor nodes that have inexpensive and limited resources. Generally, most of the sensors are assigned to the hazardous or uncontrollable environments. If the sensor nodes are randomly assigned to the wide target area, it is very hard to see the accurate locations of sensor nodes. Therefore, this study provides an efficient key distribution scheme to solve these problems. Based on the provided scheme, the study enabled the closely neighboring nodes to exchange information with each other after securing safe links by using the pre-distributed keys. At the same time, the provided scheme could increase the probability of multiparty key detection among nodes by using the location information of sensor node. Lastly, the study intended to show the superiority of the limitation method through a performance test.

Use of Tree Traversal Algorithms for Chain Formation in the PEGASIS Data Gathering Protocol for Wireless Sensor Networks

  • Meghanathan, Natarajan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.6
    • /
    • pp.612-627
    • /
    • 2009
  • The high-level contribution of this paper is to illustrate the effectiveness of using graph theory tree traversal algorithms (pre-order, in-order and post-order traversals) to generate the chain of sensor nodes in the classical Power Efficient-Gathering in Sensor Information Systems (PEGASIS) data aggregation protocol for wireless sensor networks. We first construct an undirected minimum-weight spanning tree (ud-MST) on a complete sensor network graph, wherein the weight of each edge is the Euclidean distance between the constituent nodes of the edge. A Breadth-First-Search of the ud-MST, starting with the node located closest to the center of the network, is now conducted to iteratively construct a rooted directed minimum-weight spanning tree (rd-MST). The three tree traversal algorithms are then executed on the rd-MST and the node sequence resulting from each of the traversals is used as the chain of nodes for the PEGASIS protocol. Simulation studies on PEGASIS conducted for both TDMA and CDMA systems illustrate that using the chain of nodes generated from the tree traversal algorithms, the node lifetime can improve as large as by 19%-30% and at the same time, the energy loss per node can be 19%-35% lower than that obtained with the currently used distance-based greedy heuristic.

A Resource-Optimal Key Pre-distribution Scheme for Secure Wireless Sensor Networks

  • Dai Tran Thanh;Hieu Cao Trong;Hong Choong-Seon
    • Annual Conference of KIPS
    • /
    • 2006.05a
    • /
    • pp.1113-1116
    • /
    • 2006
  • Security in wireless sensor networks is very pressing especially when sensor nodes are deployed in hostile environments. To obtain security purposes, it is essential to be able to encrypt and authenticate messages sent amongst sensor nodes. Keys for encryption and authentication must be agreed upon by communicating nodes. Due to resource limitations and other unique features, obtaining such key agreement in wireless sensor network is extremely complex. Many key agreement schemes used in general networks, such as trusted server, Diffie-Hellman and public-key based schemes, are not suitable for wireless sensor networks [1], [2], [5], [7], [8]. In that situation, key pre-distribution scheme has been emerged and considered as the most appropriate scheme [2], [5], [7]. Based on that sense, we propose a new resource-optimal key pre-distribution scheme utilizing merits of the two existing key pre-distribution schemes [3], [4]. Our scheme exhibits the fascinating properties: substantial improvement in sensors' resource usage, rigorous guarantee of successfully deriving pairwise keys between any pair of nodes, greatly improved network resiliency against node capture attack. We also present a detailed analysis in terms of security and resource usage of the scheme.

  • PDF

An Energy Efficient Clustering Method Based on ANTCLUST in Sensor Network (센서 네트워크 환경에서 ANTCLUST 기반의 에너지 효율적인 클러스터링 기법)

  • Shin, Bong-Hi;Jeon, Hye-Kyoung;Chung, Kyung-Yong
    • Journal of Digital Convergence
    • /
    • v.10 no.1
    • /
    • pp.371-378
    • /
    • 2012
  • Through sensor nodes it can obtain behavior, condition, location of objects. Generally speaking, sensor nodes are very limited because they have a battery power supply. Therefore, for collecting sensor data, efficient energy management is necessary in order to prolong the entire network survival. In this paper, we propose a method that increases energy efficiency to be self-configuring by distributed sensor nodes per cluster. The proposed method is based on the ANTCLUST. After measuring the similarity between two objects it is method that determine own cluster. It applies a colonial closure model of ant. The result of an experiment, it showed that the number of alive nodes increased 27% than existing clustering methods.

EBCO - Efficient Boundary Detection and Tracking Continuous Objects in WSNs

  • Chauhdary, Sajjad Hussain;Lee, Jeongjoon;Shah, Sayed Chhattan;Park, Myong-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2901-2919
    • /
    • 2012
  • Recent research in MEMS (Micro-Electro-Mechanical Systems) and wireless communication has enabled tracking of continuous objects, including fires, nuclear explosions and bio-chemical material diffusions. This paper proposes an energy-efficient scheme that detects and tracks different dynamic shapes of a continuous object (i.e., the inner and outer boundaries of a continuous object). EBCO (Efficient Boundary detection and tracking of Continuous Objects in WSNs) exploits the sensing capabilities of sensor nodes by automatically adjusting the sensing range to be either a boundary sensor node or not, instead of communicating to its neighboring sensor nodes because radio communication consumes more energy than adjusting the sensing range. The proposed scheme not only increases the tracking accuracy by choosing the bordering boundary sensor nodes on the phenomenon edge, but it also minimizes the power consumption by having little communication among sensor nodes. The simulation result shows that our proposed scheme minimizes the energy consumption and achieves more precise tracking results than existing approaches.

A Cluster-based Routing Protocol with Energy Consumption Balance in Distributed Wireless Sensor Networks (분산 무선센서 네트워크의 클러스터-기반 에너지 소비 균형 라우팅 프로토콜)

  • Kim, Tae-Hyo;Ju, Yeon-Jeong;Oh, Ho-Suck;Kim, Min-Kyu;Jung, Yong-Bae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • In this paper, a cluster-based routing protocol in distributed sensor network is proposed, which enable the balanced energy consumption in the sensor nodes densely deployed in the sensor fields. This routing protocol is implemented based on clusters with hierarchical scheme. The clusters are formed by the closely located sensor nodes. A cluster node with maximum residual energy in the cluster, can be selected as cluster head node. In routing, one of the nodes in the intersection area between two clusters is selected as a relay-node and this method can extend the lifetime of all the sensor nodes in view of the balanced consumption of communication energy.

A Design of Intelligent Home Network Service using Wireless Sensor Network (무선 센서 네트워크를 이용한 지능형 홈 네트워크 서비스 설계)

  • Na, Sun-Wung;Lee, Sang-Jeong;Kim, Dong-Kyun;Choi, Young-Kil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.183-193
    • /
    • 2006
  • This paper suggests a service model which uses a wireless sensor network in home network environment. The sensor network consists of fixed sensor nodes and user identification nodes which is attached to each user. With the input information of the user preference profile and the collected data from the sensor nodes, the database is constructed as a context information and analyzed by a home server to provide a service that establishes and controls automatically home appliances according to each user's preference. The proposed service model is implemented and tested on a Linux server with MySQL database and sensor nodes on TinyOS.

  • PDF