• Title/Summary/Keyword: Sensor nodes

Search Result 2,025, Processing Time 0.034 seconds

Low-complexity Sensor Selection Based on QR factorization (QR 분해에 기반한 저 복잡도 센서 선택 알고리즘)

  • Yoon Hak, Kim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.103-108
    • /
    • 2023
  • We study the problem of selecting a subset of sensor nodes in sensor networks in order to maximize the performance of parameter estimation. To achieve a low-complexity sensor selection algorithm, we propose a greedy iterative algorithm that allows us to select one sensor node at a time so as to maximize the log-determinant of the inverse of the estimation error covariance matrix without resort to direct minimization of the estimation error. We apply QR factorization to the observation matrix in the log-determinant to derive an analytic selection rule which enables a fast selection of the next node at each iteration. We conduct the extensive experiments to show that the proposed algorithm offers a competitive performance in terms of estimation performance and complexity as compared with previous sensor selection techniques and provides a practical solution to the selection problem for various network applications.

A study on imaging device sensor data QC (영상장치 센서 데이터 QC에 관한 연구)

  • Dong-Min Yun;Jae-Yeong Lee;Sung-Sik Park;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2022
  • Currently, Korea is an aging society and is expected to become a super-aged society in about four years. X-ray devices are widely used for early diagnosis in hospitals, and many X-ray technologies are being developed. The development of X-ray device technology is important, but it is also important to increase the reliability of the device through accurate data management. Sensor nodes such as temperature, voltage, and current of the diagnosis device may malfunction or transmit inaccurate data due to various causes such as failure or power outage. Therefore, in this study, the temperature, tube voltage, and tube current data related to each sensor and detection circuit of the diagnostic X-ray imaging device were measured and analyzed. Based on QC data, device failure prediction and diagnosis algorithms were designed and performed. The fault diagnosis algorithm can configure a simulator capable of setting user parameter values, displaying sensor output graphs, and displaying signs of sensor abnormalities, and can check the detection results when each sensor is operating normally and when the sensor is abnormal. It is judged that efficient device management and diagnosis is possible because it monitors abnormal data values (temperature, voltage, current) in real time and automatically diagnoses failures by feeding back the abnormal values detected at each stage. Although this algorithm cannot predict all failures related to temperature, voltage, and current of diagnostic X-ray imaging devices, it can detect temperature rise, bouncing values, device physical limits, input/output values, and radiation-related anomalies. exposure. If a value exceeding the maximum variation value of each data occurs, it is judged that it will be possible to check and respond in preparation for device failure. If a device's sensor fails, unexpected accidents may occur, increasing costs and risks, and regular maintenance cannot cope with all errors or failures. Therefore, since real-time maintenance through continuous data monitoring is possible, reliability improvement, maintenance cost reduction, and efficient management of equipment are expected to be possible.

Fixed node reduction technique using relative coordinate estimation algorithm (상대좌표 추정 알고리즘을 이용한 고정노드 저감기법)

  • Cho, Hyun-Jong;Kim, Jong-Su;Lee, Sung-Geun;Kim, Jeong-Woo;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.220-226
    • /
    • 2013
  • Recently, with the rapid development of factory automation and logistics system, a few workers were able to manage the broad workplace such as large vessels and warehouse. To estimate the exact location of these workers in the conventional wireless indoor localization systems, three or more fixed nodes are generally used to recognize the location of a mobile node consisting of a single node. However, these methods are inefficient in terms of node deployment because the broad workplace requires a lot of fixed nodes compared to workers(mobile nodes). Therefore, to efficiently deploy fixed nodes in these environments that need a few workers, this paper presents a novel estimation algorithm which can reduce the number of fixed nodes by efficiently recognizing the relative coordinates of two fixed nodes through a mobile node composed of three nodes. Also, to minimize the distance errors between mobile node and fixed node, rounding estimation(RE) technique is proposed. Experimental results show that the error rate of localization is improved, by using proposed RE technique, 90.9% compared to conventional trilateration in the free space. In addition, despite the number of fixed nodes can be reduced by up to 50% in the indoor free space, the proposed estimation algorithm recognizes precise location which has average error of 0.15m.

A Block-based Uniformly Distributed Random Node Arrangement Method Enabling to Wirelessly Link Neighbor Nodes within the Communication Range in Free 3-Dimensional Network Spaces (장애물이 없는 3차원 네트워크 공간에서 통신 범위 내에 무선 링크가 가능한 블록 기반의 균등 분포 무작위 노드 배치 방법)

  • Lim, DongHyun;Kim, Changhwa
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1404-1415
    • /
    • 2022
  • The 2-dimensional arrangement method of nodes has been used in most of RF (Radio Frequency) based communication network simulations. However, this method is not useful for the an none-obstacle 3-dimensional space networks in which the propagation delay speed in communication is very slow and, moreover, the values of performance factors such as the communication speed and the error rate change on the depth of node. Such a typical example is an underwater communication network. The 2-dimensional arrangement method is also not useful for the RF based network like some WSNs (Wireless Sensor Networks), IBSs (Intelligent Building Systems), or smart homes, in which the distance between nodes is short or some of nodes can be arranged overlapping with their different heights in similar planar location. In such cases, the 2-dimensional network simulation results are highly inaccurate and unbelievable so that they lead to user's erroneous predictions and judgments. For these reasons, in this paper, we propose a method to place uniformly and randomly communication nodes in 3-dimensional network space, making the wireless link with neighbor node possible. In this method, based on the communication rage of the node, blocks are generated to construct the 3-dimensional network and a node per one block is generated and placed within a block area. In this paper, we also introduce an algorithm based on this method and we show the performance results and evaluations on the average time in a node generation and arrangement, and the arrangement time and scatter-plotted visualization time of all nodes according to the number of them. In addition, comparison with previous studies is conducted. As a result of evaluating the performance of the algorithm, it was found that the processing time of the algorithm was proportional to the number of nodes to be created, and the average generation time of one node was between 0.238 and 0.28 us. ultimately, There is no problem even if a simulation network with a large number of nodes is created, so it can be sufficiently introduced at the time of simulation.

Void-less Routing Protocol for Position Based Wireless Sensor Networks (위치기반 무선 센서 네트워크를 위한 보이드(void) 회피 라우팅 프로토콜)

  • Joshi, Gyanendra Prasad;JaeGal, Chan;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.10
    • /
    • pp.29-39
    • /
    • 2008
  • Greedy routing which is easy to apply to geographic wireless sensor networks is frequently used. Greedy routing works well in dense networks whereas in sparse networks it may fail. When greedy routing fails, it needs a recovery algorithm to get out of the communication void. However, additional recovery algorithm causes problems that increase both the amount of packet transmission and energy consumption. Communication void is a condition where all neighbor nodes are further away from the destination than the node currently holding a packet and it therefore cannot forward a packet using greedy forwarding. Therefore we propose a VODUA(Virtually Ordered Distance Upgrade Algorithm) as a novel idea to improve and solve the problem of void. In VODUA, nodes exchange routing graphs that indicate information of connection among the nodes and if there exist a stuck node that cannot forward packets, it is terminated using Distance Cost(DC). In this study, we indicate that packets reach successfully their destination while avoiding void through upgrading of DC. We designed the VODUA algorithm to find valid routes through faster delivery and less energy consumption without requirement for an additional recovery algorithm. Moreover, by using VODUA, a network can be adapted rapidly to node's failure or topological change. This is because the algorithm utilizes information of single hop instead of topological information of entire network. Simulation results show that VODUA can deliver packets from source node to destination with shorter time and less hops than other pre-existing algorithms like GPSR and DUA.

Adaptive Partitioning of the Global Key Pool Method using Fuzzy Logic for Resilience in Statistical En-Route Filtering (통계적 여과기법에서 훼손 허용도를 위한 퍼지 로직을 사용한 적응형 전역 키 풀 분할 기법)

  • Kim, Sang-Ryul;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.57-65
    • /
    • 2007
  • In many sensor network applications, sensor nodes are deployed in open environments, and hence are vulnerable to physical attacks, potentially compromising the node's cryptographic keys. False sensing report can be injected through compromised nodes, which can lead to not only false alarms but also the depletion of limited energy resource in battery powered networks. Fan Ye et al. proposed that statistical en-route filtering scheme(SEF) can do verify the false report during the forwarding process. In this scheme, the choice of a partition value represents a trade off between resilience and energy where the partition value is the total number of partitions which global key pool is divided. If every partition are compromised by an adversary, SEF disables the filtering capability. Also, when an adversary has compromised a very small portion of keys in every partition, the remaining uncompromised keys which take a large portion of the total cannot be used to filter false reports. We propose a fuzzy-based adaptive partitioning method in which a global key pool is adaptively divided into multiple partitions by a fuzzy rule-based system. The fuzzy logic determines a partition value by considering the number of compromised partitions, the energy and density of all nodes. The fuzzy based partition value can conserve energy, while it provides sufficient resilience.

  • PDF

A Study on clustering method for Banlancing Energy Consumption in Hierarchical Sensor Network (계층적 센서 네트워크에서 균등한 에너지 소비를 위한 클러스터링 기법에 관한 연구)

  • Kim, Yo-Sup;Hong, Yeong-Pyo;Cho, Young-Il;Kim, Jin-Su;Eun, Jong-Won;Lee, Jong-Yong;Lee, Sang-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3472-3480
    • /
    • 2010
  • The Clustering technology of Energy efficiency wireless sensor network gets the energy efficiency by reducing the number of communication between sensor nodes and sink node. In this paper, First analyzed on the clustering technique of the distributed clustering protocol routing scheme LEACH (Low Energy Adaptive Clustering Hierarchy) and HEED (Hybrid, Energy-Efficient Distributed Clustering Approach), and based on this, new energy-efficient clustering technique is proposed for the cause the maximum delay of dead nodes and to increase the lifetime of the network. In the proposed method, the cluster head is elect the optimal efficiency node based on the residual energy information of each member node and located information between sink node and cluster node, and elected a node in the cluster head since the data transfer process from the data been sent to the sink node to form a network by sending the energy consumption of individual nodes evenly to increase the network's entire life is the purpose of this study. To verify the performance of the proposed method through simulation and compared with existing clustering techniques. As a result, compared to the existing method of the network life cycle is approximately 5-10% improvement could be confirmed.

Reliable Multicasting with Implicit ACK and Indirect Recovery in Wireless Sensor Networks (묵시적 응답 및 간접 복구를 이용한 무선 센서 네트워크에서의 신뢰성 있는 멀티캐스팅)

  • Kim, Sung-Hoon;Yang, Hyun;Park, Chang-Yun
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.3
    • /
    • pp.215-226
    • /
    • 2008
  • As sensor networks are used in various and dynamic applications, the function of sink-to-sensors reliable multicasting such as for task reprogramming is newly required. NAK-based error recovery schemes have been proposed for energy efficient reliable multicasting. However, these schemes have incompleteness problems such as the last packet loss. This paper introduces an ACK-based error recovery scheme, RM2I(Reliable Multicast with Implicit ACK and Indirect Recovery). It utilizes wireless multicast advantage in which a packet may be delivered to all of its omni-directional neighbor nodes. When a sender overhears a packet which its receiver forwards to the next nodes, it may interpret it as an ACK from the receiver. We call it an Implicit ACK. In Indirect Recovery, when a node receives a packet from neighbor nodes which are not its direct upstream node, it saves and utilizes it for error recovery. Using NS-2 simulator, we have analyzed their effects. We have also compared RM2I with the NAK-based error recovery scheme. In results, RM2I shows comparable performances to the ideal NAK-based scheme, except where Implicit ACK and Indirect Recovery do not occur at the edges of the networks.

Multi channel reservation scheme for underwater sensor network (수중 센서 네트워크에서 다중 채널 예약방법)

  • Lee, Dong-Won;Kim, Sun-Myeng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.336-339
    • /
    • 2011
  • In the RTLS(Real Time Location Based System), in case of existing a number of moving target, extremely complecated data flow is can be occurred. In the network where single gateway exists, various data which was collected from sensor node is transmitted along the simple route as time goes by. In case of multi-gateway configuration, the collected data is transmitted through diverse routes rather than simple route. This kind of data causes jams on nodes and this brings down the performance of the network. Different from existing studies, in this thesis, MAC (Media Access Control) protocol which minimizes data collision between nodes and guarantees QoS(Quality of Service) is suggested, in order to communicate efficiently in multi-gateway underwater sensor network environment. In the suggested protocol, source node which wants to transmit data makes a channel reservation to a number of destination node using a RTS packet. Source node reserves a channel without collision, by scheduling CTS response time using expected delay information from neighbor nodes. Once the reservation is made, source node transmit data packet without collision. This protocol analyzes/estimates the performance compared to a method provided from existing studies via simulation. As a results of the analysis, it was comfirmed that the suggested method has better performance, such as efficiency and delay.

  • PDF

Method of Detecting and Isolating an Attacker Node that Falsified AODV Routing Information in Ad-hoc Sensor Network (애드혹 센서 네트워크에서 AODV 라우팅 정보변조 공격노드 탐지 및 추출기법)

  • Lee, Jae-Hyun;Kim, Jin-Hee;Kwon, Kyung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.12
    • /
    • pp.2293-2300
    • /
    • 2008
  • In ad-hoc sensor network, AODV routing information is disclosed to other nodes because AODV protocol doesn't have any security mechanisms. The problem of AODV is that an attacker can falsify the routing information in RREQ packet. If an attacker broadcasts the falsified packet, other nodes will update routing table based on the falsified one so that the path passing through the attacker itself can be considered as a shortest path. In this paper, we design the routing-information-spoofing attack such as falsifying source sequence number and hop count fields in RREQ packet. And we suggest an efficient scheme for detecting the attackers and isolating those nodes from the network without extra security modules. The proposed scheme doesn't employ cryptographic algorithm and authentication to reduce network overhead. We used NS-2 simulation to evaluate the network performance. And we analyzed the simulation results on three cases such as an existing normal AODV, AODV under the attack and proposed AODV. Simulation results using NS2 show that the AODV using proposed scheme can protect the routing-information-spoofing attack and the total n umber of received packets for destination node is almost same as the existing norm at AODV.