• Title/Summary/Keyword: Sensor node

Search Result 1,927, Processing Time 0.031 seconds

An Energy-efficient Edge Detection Method for Continuous Object Tracking in Wireless Sensor Networks (무선 센서 네트워크에서의 연속적인 물체의 추적을 위한 에너지 효율적인 경계 선정 기법)

  • Jang, Sang-Wook;Hahn, Joo-Sun;Ha, Rhan
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.6
    • /
    • pp.514-527
    • /
    • 2009
  • Wireless sensor networks (WSNs) can be used in various applications for military or environmental purpose. Recently, there are lots of on-going researches for detecting and tracking the spread of continuous objects or phenomena such as poisonous gas, wildfires, earthquakes, and so on. Some previous work has proposed techniques to detect edge nodes of such a continuous object based on the information of all the 1-hop neighbor nodes. In those techniques, however, a number of nodes are redundantly selected as edge nodes, and thus, the boundary of the continuous object cannot be presented accurately. In this paper, we propose a new edge detection method in which edge nodes of the continuous object are detected based on the information of the neighbor nodes obtained via the Localized Delaunay Triangulation so that a minimum number of nodes are selected as edge nodes. We also define the sensor behavior rule for tracking continuous objects energy-efficiently. Our simulation results show that the proposed edge detection method provides enhanced performance compared with previous 1-hop neighbor node based methods. On the average, the accuracy is improved by 29.95% while the number of edge nodes, the amount of communication messages and energy consumption are reduced by 54.43%, 79.36% and 72.34%, respectively. Moreover, the number of edge nodes decreases by 48.38% on the average in our field test with MICAz motes.

Partial Path Selection Method in Each Subregion for Routing Path Optimization in SEF Based Sensor Networks (통계적 여과 기법 기반 센서 네트워크에서 라우팅 경로 최적화를 위한 영역별 부분 경로 선택 방법)

  • Park, Hyuk;Cho, Tae-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.108-113
    • /
    • 2012
  • Routing paths are mightily important for the network security in WSNs. To maintain such routing paths, sustained path re-selection and path management are needed. Region segmentation based path selection method (RSPSM) provides a path selection method that a sensor network is divided into several subregions, so that the regional path selection and path management are available. Therefore, RSPSM can reduce energy consumption when the path re-selection process is executed. However, it is hard to guarantee optimized secure routing path at all times since the information using the path re-selection process is limited in scope. In this paper, we propose partial path selection method in each subregion using preselected partial paths made by RSPSM for routing path optimization in SEF based sensor networks. In the proposed method, the base station collects the information of the all partial paths from every subregion and then, evaluates all the candidates that can be the optimized routing path for each node using a evaluation function. After the evaluation process is done, the result is sent to each super DN using the global routing path information (GPI) message. Thus, each super DN provides the optimized secure routing paths using the GPI. We show the effectiveness of the proposed method via the simulation results. We expect that our method can be useful for the improvement of RSPSM.

Transmission Delay Adopted Time Synchronization Method for Wireless Sensor Network (무선 센서 네트워크를 위한 전송 지연 적응형 시각 동기화)

  • Kim, Min-Je;Jang, Kyung-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.497-500
    • /
    • 2010
  • Wireless sensor network is the system for data collection and data process between many nodes. For this work, Synchronization of operation execution and ordering many events are needed. Reference the external time information is the most accurate way to have same time information for all nodes but it's hard to apply these to sensor network. So there are many study of time synchronization there are many error occurred when the time synchronization is executed in the sensor network and minimizing these errors is important. In this paper, we propose how to minimize errors using several time stamp information exchanging when the network is initialized. When the big difference is occurred between receive time and send time in the node communication(cause of traffic overhead and etc), it shows big error of time correction and transfer delay time. but it's hard to detect these errors when it exchanges time stamp information just one time. so we try to reduce these errors using the median value of transfer delay and time correction value with many times of time stamp information exchange.

  • PDF

Bio-Signal Detection Monitoring System Using ZigBee and Wireless Network (ZigBee와 무선 네트워크를 이용한 생체신호 검출 모니터링 시스템)

  • Kim, Kuk-Se;Bang, Sun-Kwang;Lee, Jeong-Gi;Ahn, Seong-Soo;Lee, Joon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.477-481
    • /
    • 2007
  • The emergency patient who occurs from the place where it is various the control which is quick must come to accomplish in Ubiquitous environment. In the body of the patient or the old person the organism signal sensor about under attaching condition of the patient at real-time about under the monitor ring about under disposing the control which is quick against the emergency patient does to become accomplished at the case real-time when the above will get in the body of the patient or the old person. Using ZigBee (802.15.4) system base on Shor wireless communication protocol because of complement wireless of hospital. This system use ZigBee (802.15.4) system to get for electrocardiogram, blood pressure and pulse bio-sensors. This paper constructs Bio-Sensor communication monitoring system and transmission rate and the delay which it follows possibility and node occurrence rate of wireless sensor network construction hour transmission session it leads and it verifies the effectiveness.

  • PDF

Vulnerability Analysis and Detection Mechanism against Denial of Sleep Attacks in Sensor Network based on IEEE 802.15.4 (IEEE 802.15.4기반 센서 네트워크에서 슬립거부 공격의 취약성 분석 및 탐지 메커니즘)

  • Kim, A-Reum;Kim, Mi-Hui;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.1-14
    • /
    • 2010
  • IEEE 802.15.4[1] has been standardized for the physical layer and MAC layer of LR-PANs(Low Rate-Wireless Personal Area Networks) as a technology for operations with low power on sensor networks. The standardization is applied to the variety of applications in the shortrange wireless communication with limited output and performance, for example wireless sensor or virtual wire, but it includes vulnerabilities for various attacks because of the lack of security researches. In this paper, we analyze the vulnerabilities against the denial of sleep attacks on the MAC layer of IEEE 802.15.4, and propose a detection mechanism against it. In results, we analyzed the possibilities of denial of sleep attacks by the modification of superframe, the modification of CW(Contention Window), the process of channel scan or PAN association, and so on. Moreover, we comprehended that some of these attacks can mount even though the standardized security services such as encryption or authentication are performed. In addition to, we model for denial of sleep attacks by Beacon/Association Request messages, and propose a detection mechanism against them. This detection mechanism utilizes the management table consisting of the interval and node ID of request messages, and signal strength. In simulation results, we can show the effect of attacks, the detection possibility and performance superiorities of proposed mechanism.

An Energy Estimation-based Routing Protocol for Maximizing Network Lifetime in Wireless Sensor Networks (무선 센서네트워크에서 네트워크 수명을 최대화하기 위한 에너지 추정 기반의 라우팅 프로토콜)

  • Hong, Ran-Kyung;Kweon, Ki-Suk;Ghim, Ho-Jin;Yoon, Hyun-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.281-285
    • /
    • 2008
  • Wireless sensor networks are closely related with the geometric environment in which they are deployed. We consider the probable case when a routing protocol runs on an environment with many complex obstacles like downtown surroundings. In addition, there are no unrealistic assumptions in order to increase practicality of the protocol. Our goal is to find a routing protocol for maximizing network lifetime by using only connectivity information in the complex sensor network environment. We propose a topology-based routing algorithm that accomplishes good performance in terms of network lifetime and routing complexity as measures. Our routing algorithm makes routing decision based on a weighted graph as topological abstraction of the complex network. The graph conduces to lifetime enhancement by giving alternative paths, distributing the skewed burden. An energy estimation method is used so as to maintain routing information without any additional cost. We show how our approach can be used to maximize network lifetime and by extensive simulation we prove that out approach gives good results in terms of both measures-network lifetime and routing complexity.

Time Synchronization Algorithm using the Clock Drift Rate and Reference Signals Between Two Sensor Nodes (클럭 표류율과 기준 신호를 이용한 두 센서 노드간 시간 동기 알고리즘)

  • Kim, Hyoun-Soo;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.51-56
    • /
    • 2009
  • Time synchronization algorithm in wireless sensor networks is essential to various applications such as object tracking, data encryption, duplicate detection, and precise TDMA scheduling. This paper describes CDRS that is a time synchronization algorithm using the Clock Drift rate and Reference Signals between two sensor nodes. CDRS is composed of two steps. At first step, the time correction is calculated using offset and the clock drift rate between the two nodes based on the LTS method. Two nodes become a synchronized state and the time variance can be compensated by the clock drift rate. At second step, the synchronization node transmits reference signals periodically. This reference signals are used to calculate the time difference between nodes. When this value exceeds the maximum error tolerance, the first step is performed again for resynchronization. The simulation results on the performance analysis show that the time accuracy of the proposed algorithm is improved, and the energy consumption is reduced 2.5 times compared to the time synchronization algorithm with only LTS, because CDRS reduces the number of message about 50% compared to LTS and reference signals do not use the data space for timestamp.

An Energy Balanced Multi-Hop Routing Mechanism considering Link Error Rate in Wireless Sensor Networks (무선 센서 네트워크의 링크 에러율을 고려한 에너지소모가 균등한 멀티 홉 라우팅 기법)

  • Lee, Hyun-Seok;Heo, Jeong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.29-36
    • /
    • 2013
  • In wireless sensor networks, energy is the most important consideration because the lifetime of the sensor node is limited by battery. Most of the existing energy efficient routing protocols use the minimum energy path to minimize energy consumption, which causes an unbalanced distribution of residual energy among nodes. As a result, the power of nodes on energy efficient paths is quickly depletes resulting in inactive. To solve these problems, a method to equalize the energy consumption of the nodes has been proposed, but do not consider the link error rate in the wireless environment. In this paper, we propose a uniform energy consumption of cluster-based multi-hop routing mechanism considering the residual energy and the link error rate. This mechanism reduces energy consumption caused by unnecessary retransmissions and distributes traffic evenly over the network because considering the link error rate. The simulation results compared to other mechanisms, the proposed mechanism is energy-efficient by reducing the number of retransmissions and activation time of all nodes involved in the network has been extended by using the energy balanced path.

Energy-Efficient Multipath Routing Protocol for Supporting Mobile Events in Wireless Sensor Networks (무선 센서 네트워크에서 이동 이벤트를 지원하기 위한 에너지 효율적인 멀티패스 라우팅 프로토콜)

  • Kim, Hoewon;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.455-462
    • /
    • 2016
  • Wireless sensor networks have been researched to gather data about events on sensor fields from sources at sinks. Multipath routing is one of attractive approaches to reliably send data against the problem of frequent breakages on paths from sources to sinks due to node and link failures. As mobile events such as humans, animals, and vehicles are considered, sources may be continuously generated according to the movement of the mobile event. Thus, mobile events provide new challenging issue in multipath routing. However, the research on multipath routing mainly focus on both efficient multipath construction from sources to static sinks and fast multipath reconstruction against path breakages. Accordingly, the previous multipath routing protocols request each source continuously generated by a mobile event to construct individual multipath from the source to sinks. This induces the increase of multipath construction cost in the previous protocols in proportion to the number of source. Therefore, we propose efficient multipath routing protocol for supporting continuous sources generated by mobile events. In the proposed protocol, new source efficiently reconstructs its multipath by exploiting the existing multipath of previous sources. To do this, the proposed protocol selects one among three reconstruction methods: a local reconstruction, a global partial one, and a global full one. For a selection decision, we provide an analytical energy consumption cost model that calculates the summation of both the multipath reconstruction cost and the data forwarding cost. Simulation results show that the proposed protocol has better performance than the previous protocol to provide multipath routing for mobile events.

Energy and Delay-Efficient Multipath Routing Protocol for Supporting Mobile Sink in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크를 지원하기 위한 다중 경로 라우팅 프로토콜)

  • Lee, Hyun Kyu;Lee, Euisin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.447-454
    • /
    • 2016
  • The research on multipath routing has been studied to solve the problem of frequent path breakages due to node and link failures and to enhance data delivery reliability in wireless sensor networks. In the multipath routing, mobile sinks such as soldiers in battle fields and rescuers in disaster areas bring about new challenge for handling their mobility. The sink mobility requests new multipath construction from sources to mobile sinks according to their movement path. Since mobile sinks have continuous mobility, the existing multipath can be exploited to efficiently reconstruct to new positions of mobile sinks. However, the previous protocols do not address this issue. Thus, we proposed an efficient multipath reconstruction protocol called LGMR for mobile sinks in wireless sensor networks. The LGMR address three multipath reconstruction methods based on movement types of mobile sinks: a single hop movement-based local multipath reconstruction, a multiple hop movement-based local multipath reconstruction, and a multiple hop movement-based global multipath reconstruction. Simulation results showed that the LGMR has better performance than the previous protocol in terms of energy consumption and data delivery delay.