• Title/Summary/Keyword: Sensor module

검색결과 1,211건 처리시간 0.036초

고랑인식 센서 모듈을 이용한 밭고랑 자율조향에 대한 연구 (A Study on Furrow Autonomous Steering using Furrow Recognition Sensor Module)

  • 조용준;박관형;윤해룡;홍형길;오장석;강민수;장선호;서갑호;이영태
    • 한국기계가공학회지
    • /
    • 제21권9호
    • /
    • pp.92-97
    • /
    • 2022
  • In this paper, as a research on autonomous steering for agriculture, a sensor module for furrow recognition was developed through a low-cost distance sensor combination. The developed sensor module was applied to the vehicle, and when driving in a furrow curve, the autonomous steering success rate was 100% at a curvature of 20 m or more, and 70% at a curvature of 15 m or less. The self-steering success rate according to the ground condition showed a 100% success rate regardless of soil, weeds, or mulching film.

Implementation of Falling Accident Monitoring and Prediction System using Real-time Integrated Sensing Data

  • Bonghyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.2987-3002
    • /
    • 2023
  • In 2015, the number of senior citizens aged 65 and over in Korea was 6,662,400, accounting for 13.1% of the total population. Along with these social phenomena, risk information related to the elderly is increasing every year. In particular, a fall accident caused by a fall can cause serious injury to an elderly person, so special attention is required. Therefore, in this paper, we implemented a system that monitors fall accidents and informs them in real time to minimize damage caused by falls. To this end, beacon-based indoor location positioning was performed and biometric information based on an integrated module was collected using various sensors. In other words, a multi-functional sensor integration module was designed based on Arduino to collect and monitor user's temperature, heart rate, and motion data in real time. Finally, through the analysis and prediction of measurement signals from the integrated module, damage from fall accidents can be reduced and rapid emergency treatment is possible. Through this, it is possible to reduce the damage caused by a fall accident, and rapid emergency treatment will be possible. In addition, it is expected to lead a new paradigm of safety systems through expansion and application to socially vulnerable groups.

보행보조로봇을 위한 다중 생체/역학 센서의 신호 분석 및 사용자 의도 감지 (Detection of Implicit Walking Intention for Walking-assistant Robot Based on Analysis of Bio/Kinesthetic Sensor Signals)

  • 장은혜;전병태;지수영;이재연;조영조
    • 로봇학회논문지
    • /
    • 제5권4호
    • /
    • pp.294-301
    • /
    • 2010
  • In order to produce a convenient robot for the aged and the lower limb disabled, it is needed for the research detecting implicit walking intention and controlling robot by a user's intention. In this study, we developed sensor module system to control the walking- assist robot using FSR sensor and tilt sensor, and analyzed the signals being acquired from two sensors. The sensor module system consisted of the assist device control unit, communication unit by wire/wireless, information collection unit, information operation unit, and information processing PC which handles integrated processing of assist device control. The FSR sensors attached user's the palm and the soles of foot are sensing force/pressure signals from these areas and are used for detecting the walking intention and states. The tilt sensor acquires roll and pitch signal from area of vertebrae lumbales and reflects the pose of the upper limb. We could recognize the more detailed user's walking intention such as 'start walking', 'start of right or left foot forward', and 'stop walking' by the combination of FSR and tilt signals can recognize.

Behavior recognition system based fog cloud computing

  • Lee, Seok-Woo;Lee, Jong-Yong;Jung, Kye-Dong
    • International journal of advanced smart convergence
    • /
    • 제6권3호
    • /
    • pp.29-37
    • /
    • 2017
  • The current behavior recognition system don't match data formats between sensor data measured by user's sensor module or device. Therefore, it is necessary to support data processing, sharing and collaboration services between users and behavior recognition system in order to process sensor data of a large capacity, which is another formats. It is also necessary for real time interaction with users and behavior recognition system. To solve this problem, we propose fog cloud based behavior recognition system for human body sensor data processing. Fog cloud based behavior recognition system solve data standard formats in DbaaS (Database as a System) cloud by servicing fog cloud to solve heterogeneity of sensor data measured in user's sensor module or device. In addition, by placing fog cloud between users and cloud, proximity between users and servers is increased, allowing for real time interaction. Based on this, we propose behavior recognition system for user's behavior recognition and service to observers in collaborative environment. Based on the proposed system, it solves the problem of servers overload due to large sensor data and the inability of real time interaction due to non-proximity between users and servers. This shows the process of delivering behavior recognition services that are consistent and capable of real time interaction.

RF모듈을 이용한 자동차 ECU 센서신호의 원격계측 (Remote Measurement for Automobile′s ECU Sensor Signals Using RF modules)

  • 이성철;서지원;권대규;방두열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1067-1070
    • /
    • 2003
  • In this paper, we present a remote measurement system for the wireless monitoring of ECU Sensor Signals of vehicle. In order to measure the ECU sensor signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A micro-controller 80C196KC is used for communicating ECU sensor signals. ECU sensor signals are transmitted to the RF-wireless terminal that was developed using the micro controller 80386EX. LCD, and RF-module. 80386EX software is programmed to monitor the ECU sensor signals using the Borland C++ compiler in which the half duplex method was used for the RS232 communication. The algorithms for measuring the ECU sensor signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of ECU sensor signals using 80386EX is also verified through the developed systems and algorithms.

  • PDF

Module-type Triboelectric Nanogenerator for Collecting Various Kinetic Energies

  • Sungho, Ji;Youngchul, Chang;Jinhyoung, Park
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.376-382
    • /
    • 2022
  • A triboelectric nanogenerator (TENG) can obtain electrical output due to the reciprocal motion between two objects (i.e., rubbing), in which repetitive contact is made. High reliability, stable output, and high reproducibility are important aspects of the electrical output obtained through a TENG as a sensor or generator, thus enabling its meaningful use. Therefore, many researchers fabricated TENGs into individual parts in the form of one module type to obtain high reproducibility and reliability. Since a TENG manufactured as a module type operates as a single device, it is possible to collect kinetic energy and convert it into electrical energy through the interaction between internally configured elements without the need for a separate structure. In addition, it is relatively easy to apply the size to the body, machine tools, and natural environment by simply adjusting the size suitable for use and surrounding environmental conditions. In this paper, the application cases of module-type TENGs are divided into four areas, and the research progress of module-type TENGs in each area is extensively reviewed.

저가형 PSD센서를 이용한 홈서비스 로봇의 Map building용 센서 제어시스템 (A sensor controller for map building of home service robot using low cost PSD sensor)

  • 현웅근;이창환
    • 한국정보통신학회논문지
    • /
    • 제10권10호
    • /
    • pp.1897-1904
    • /
    • 2006
  • 가사도우미 로봇과 같은 서비스 로봇은 가사구성물이 내제된 가정 내 가사 구성물 환경을 인식해야한다. 기존에는 홈서비스 로봇 등은 CCD, 초음파 등의 센서로 가정 내 구성물 및 실내 지형을 인식하였다. 실내지형 지도를 작성 할 경우 가사 구성물에는 헝겊 등이 있는바, 음파 등을 흡수하여 정확한 지형 지도가 만들어지지 못한다. 또한 CCD 카메라를 쓸 경우 pixel에 따라 거리 측정 정도가 달라지는 문제가 발생하고 가격이 고가이다. 본 논문은 이동로봇을 위한 위치 및 물체인식용 지능형 센서 제어 시스템에 대해 기술한다. 개발된 센서제어시스템은 저가의 광 PSD(Position sensitive detector)를 사용하였다. PSD센서의 스위칭 노이즈 및 광 산란에 의한 잡음을 효과적으로 제거하기 위해 로봇의 주행 중 센서 스캔 시 간 등을 고려하여 heuristic software filter를 제안하였다. 또한 개발된 시스템은 초음파 센서에 의한 지형작성 비교와 본 논문에서 개발한 시스템을 비교하였으며, 복잡한 실내지 형을 대상으로 실험 지형지도 작성 실험을 통해 우수성을 입증하였다.

토크 오차 감소를 위한 디스크형 커플링을 갖는 토크센서가 내장된 로봇 관절모듈 (Joint Module with Joint Torque Sensor Having Disk-type Coupling for Torque Error Reduction)

  • 민재경;김휘수;송재복
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.133-138
    • /
    • 2016
  • 기존에는 로봇 말단에 6축 힘/토크 센서를 부착하여 로봇의 힘제어 및 충돌감지를 수행하였지만, 이 방법은 매우 고가이고, 로봇의 몸체에서 발생한 충돌을 감지할 수 없었다. 이의 대안으로 각 관절에 관절 토크센서를 장착하였으나, 토크 측정 시에 발생하는 다양한 오차로 인하여 실제 적용에 한계가 있었다. 이러한 문제를 해결하고자 본 연구에서는 정확한 토크 측정을 위한 관절 토크센서 및 이를 포함하는 관절모듈을 개발하였다. 제안된 관절모듈은 로봇에 인가되는 모멘트 부하를 지지하고, 조립 시 발생하는 응력을 감소시키기 위하여 토크센서에 디스크형 커플링을 첨가하여 원하는 회전토크만을 효과적으로 측정할 수 있도록 하였다. 본 논문에서는 다양한 실험을 통하여 제안한 토크센서의 성능을 검증하였다.

FOUNDATION 필드버스 인터페이스 보드 구현 (Implementation of FOUNDATION Fieldbus Interface Board)

  • 최인호;홍승호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.93-93
    • /
    • 2000
  • In this study, physical and data link layer protocols of FOUNDATION Fieldbus are implemented. INTEL386EX and 80196KC are used fer the CPU of PC interface board and sensor interface module, respectively The physical layer protocol of FOUNDATION Fieldbus is developed by using FB3050 chip, the fieldbus communication controller ASIC. The data Link layer protocol of FOUNDATION Fieldbus is implemented by software.

  • PDF

Sensor Module for Detecting Postural Change and Falls

  • Jeon, G.R.;Ahn, S.J.;Shin, B.J.;Kang, S.C.;Kim, J.H.
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.362-367
    • /
    • 2014
  • In this study, a postural change detection sensor module (PCDSM) was developed to detect postural changes in activities of daily living (ADL) and falls. The PCDSM consists of eight mercury sensors that measure angle variations in $360^{\circ}$ rotation and $90^{\circ}$ tilting. From the preliminary study, the output characteristics of the PCDSM were confirmed with the angle variations of rotational motion and a tilting table. Three experiments were conducted to test rotational motion, postural changes, and falling and lying. The results confirmed that the PCDSM could effectively detect postural changes, movement patterns, and falls or non-falls.