• Title/Summary/Keyword: Sensor module

Search Result 1,217, Processing Time 0.027 seconds

A Study on the Control Algorithm for the 300[mm] Wafer Edge Exposure of ArF Type using A Linear CCD Sensor (선형 CCD 센서를 적용한 ArF 파장대 웨이퍼 에지 노광장비의 제어에 관한 연구)

  • Park, Hong-Lae;Lee, Cheol-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.148-155
    • /
    • 2008
  • This study presents a process control of the wafer edge exposure (WEE) used in 300[mm] wafer environment. WEE, as a key module of the overall track system (coater and developer) for making patterns on wafer, is a system to expose the UV-ray on the wafer to remove a photo resist around edge of the wafer. It can measure, memorize and control the distance and angles from wafer center to edge. Recently in the 300[mm] semiconductor fabrication, the track system strongly requires that WEE station has a controller with high throughput and accuracy to increase process efficiency. We have designed and developed the controller, and present here a WEE control algorithm and experimental results.

Development of an Optical Sensor for Measuring the Shape of a Back Light Unit Module (백라이트 모듈 유리의 형상 측정을 위한 광센서 개발)

  • Jang Yong-jin;Ryu Young-kee;Oh Chun-suk
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.06a
    • /
    • pp.176-178
    • /
    • 2004
  • 디스플레이 매체의 발전에 따라 TV나 컴퓨터 모니터 또는 TFT-LCD, PDP, EL 등의 평판 디스플레이장치들의 대형화, 고화질, 고정밀도가 요구되어지고 있다. 이러한 디스플레이 장치들은 영상표시를 위해 유리를 사용하고 있는데, 사용되는 유리의 형상과 두께는 디스플레이 장치들의 성능에 영향을 준다. 특히 장치가 대형화되면서 대형 평판 유리의 변형된 형상과 균일하지 않은 두께는 디스플레이 장치들의 고화질, 고정밀도를 막는 주요한 요인이 되고 있다. 이러한 이유로 디스플레이 장치용 평판 유리의 형상 및 두께를 측정하는 센서의 요구가 많아지고 있다. 그러나 아직 유리의 형상과 두께를 측정하는 센서 및 시스템은 고가이고. 측정 방법 또한 많은 문제점을 가지고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위하여 하나의 센서로 유리의 형상과 두께를 동시에 고속으로 측정이 가능한 저가의 비접촉식 광센서를 개발하기로 한다. 이 논문에서 개발된 광센서에는 CD-player에 사용되는 홀로그램 레이저를 사용함으로써 고정밀 형상측정, 저가의 광센서, 센서의 소형화를 이룰 수 있다.

  • PDF

High Performance Current Sensing Circuit for Current-Mode DC-DC Buck Converter

  • Jin, Hai-Feng;Piao, Hua-Lan;Cui, Zhi-Yuan;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • A simulation study of a current-mode direct current (DC)-DC buck converter is presented in this paper. The converter, with a fully integrated power module, is implemented by using sense method metal-oxide-semiconductor field-effect transistor (MOSFET) and bipolar complementary metal-oxide-semiconductor (BiCMOS) technology. When the MOSFET is used in a current sensor, the sensed inductor current with an internal ramp signal can be used for feedback control. In addition, the BiCMOS technology is applied in the converter for an accurate current sensing and a low power consumption. The DC-DC converter is designed using the standard $0.35\;{\mu}m$ CMOS process. An off-chip LC filter is designed with an inductance of 1 mH and a capacitance of 12.5 nF. The simulation results show that the error between the sensing signal and the inductor current can be controlled to be within 3%. The characteristics of the error amplification and output ripple are much improved, as compared to converters using conventional CMOS circuits.

Detection of Absolute Position for Magneto-Optical Encoder Using Linear Table Compensation (선형 테이블 보상법을 이용한 마그네틱-옵티컬 엔코더의 절대 위치 검출에 관한 연구)

  • Kim, Seul Ki;Kim, Hyeong Jun;Lee, Suk;Park, Sung Hyun;Lee, Kyung Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1007-1013
    • /
    • 2016
  • This paper presents the development of a magneto-optical encoder for higher precision and smaller size. In general, optical encoders can have very high precision based on the position information of the slate, while their sizes tend to be larger due to the presence of complex and large components, such as an optical module. In contrast, magnetic encoders have exactly the opposite characteristics, i.e., small size and low precision. In order to achieve encoder features encompassing the advantages of both optical and magnetic encoders, i.e., high precision and small size, we designed a magneto-optical encoder and developed a method to detect absolute position, by compensating for the error of the hall sensor using the linear table compensation method. The performance of the magneto-optical encoder was evaluated through an experimental testbed.

Design and Implementation of a Dual-Channel ZigBee Router (이중 채널 ZigBee 라우터의 설계 및 구현)

  • Kim, Brian
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.416-421
    • /
    • 2007
  • ZigBee is becoming a promising communication protocol for wireless sensor networks based on low-power consumption. In case of a ZigBee network requesting continuous transmission of sensed data, the required bandwidth can be overwhelm the maximum transmission rate of 150Kbps. However, the ZigBee router which delivers data from source node to destination node can transmit data at most in a half of maximum rate because the router can not send and receive the data simultaneously. In this paper, we propose and implement a dual-channel router which can send and receive data simultaneously. Also, we propose a centralized channel allocation algorithm to allocate different channels to each module. The experiment result by the proposed dual-channel router shows a maximum throughput of 150Kbps as large as twice of normal single-channel router.

Three Dimensional Positioning Accuracy of KOMPSAT-1 Stereo Imagery

  • Jeong, Soo;Kim, Yong-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.339-345
    • /
    • 2000
  • KOMPSAT-1 was launched on 21 December, 1999 and the main mission of the satellite is the cartography to provide the imagery from a remote earth view for the production of maps of Korean territory. For this purpose, the satellite has capability to tilt the spacecraft utmost $\pm$45 degrees to acquire stereo satellite imagery in different paths. This study aims to estimate the three dimensional positioning accuracy of stereo satellite imagery from EOC(electro-optical camera), a payload of KOMPSAT-1 satellite. For this purpose, the ground control points and check points were obtained by GPS surveying. The sensor modeling and the adjustment was performed by PCI software installed in KARI (Korea Aerospace Research Institute), which contained mathematical analysis module for KOMPSAT-1 EOC. The study areas were Taejon and Nonsan, placed in the middle part of Korea. As a result of this study, we found that the RMSE(root mean square error) value of three dimensional positioning KOMPST-1 stereo imagery can be less than 1 pixel (6.6 m) if we can use about 10 GCPs(ground control points). Then, a standarrd of FGDC (Federal Geographic Data Committee) of USA was applied to the result to estimate the three dimensional positioning accuracy of KOMPSAT-1 stereo imagery.

Laboratory Environment Monitoring: Implementation Experience and Field Study in a Tertiary General Hospital

  • Kang, Seungjin;Baek, Hyunyoung;Jun, Sunhee;Choi, Soonhee;Hwang, Hee;Yoo, Sooyoung
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.371-375
    • /
    • 2018
  • Objectives: To successfully introduce an Internet of Things (IoT) system in the hospital environment, this study aimed to identify issues that should be considered while implementing an IoT based on a user demand survey and practical experiences in implementing IoT environment monitoring systems. Methods: In a field test, two types of IoT monitoring systems (on-premises and cloud) were used in Department of Laboratory Medicine and tested for approximately 10 months from June 16, 2016 to April 30, 2017. Information was collected regarding the issues that arose during the implementation process. Results: A total of five issues were identified: sensing and measuring, transmission method, power supply, sensor module shape, and accessibility. Conclusions: It is expected that, with sufficient consideration of the various issues derived from this study, IoT monitoring systems can be applied to other areas, such as device interconnection, remote patient monitoring, and equipment/environmental monitoring.

Implementation of a PLC-based Pitching System capable of Pitching a Breaking Ball (변화구 투구가 가능한 PLC기반의 피칭 시스템 구현)

  • Kim, Min-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.380-385
    • /
    • 2018
  • Recently, interest in baseball has been increasing as the level of international baseball games, the popularity of domestic leagues, and the number of players entering the MLB has increased. In this paper, we propose a pitching system that can be applied to both professional and amateur baseball. The pitching system consists of a control module using MSB764T PLC, a pitching mechanism including AC motors and a ball feed rail, an HMI using the CHA-070WR model, inverter, etc. To pitch the breaking balls, the two AC motors each use an inverter to independently control the speed. The implemented pitching system was experimented on, investigating ball speed and ball movement according to RPM using the BUSHNELL Velocity Speed Gun. Experimental results on ball speed are similar to the theoretical data and the measured data. From the experimental data, it is confirmed that the damping coefficient value for the pitching ball is about 0.98. In the case of the breaking ball, the larger the difference between the speeds on the sides of the ball and the faster the ball speed, the larger the bending degree.

A Design and Implementation of Object Recognition based Interactive Game Contents using Kinect Sensor and Unity 3D Engine (키넥트 센서와 유니티 3D 엔진기반의 객체 인식 기법을 적용한 체험형 게임 콘텐츠 설계 및 구현)

  • Jung, Se-hoon;Lee, Ju-hwan;Jo, Kyeong-Ho;Park, Jae-Seong;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1493-1503
    • /
    • 2018
  • We propose an object recognition system and experiential game contents using Kinect to maximize object recognition rate by utilizing underwater robots. we implement an ice hockey game based on object-aware interactive contents to validate the excellence of the proposed system. The object recognition system, which is a preprocessor module, is composed based on Kinect and OpenCV. Network sockets are utilized for object recognition communications between C/S. The problem of existing research, degradation of object recognition at long distance, is solved by combining the system development method suggested in the study. As a result of the performance evaluation, the underwater robot object recognized all target objects (90.49%) with 80% of accuracy from a 2m distance, revealing 42.46% of F-Measure. From a 2.5m distance, it recognized 82.87% of the target objects with 60.5% of accuracy, showing 34.96% of F-Measure. Finally, it recognized 98.50% of target objects with 59.4% of accuracy from a 3m distance, showing 37.04% of F-measure.

COS MEMS System Design with Embedded Technology (Embedded 기술을 이용한 COS MEMS 시스템 설계)

  • Hong, Seon Hack;Lee, Seong June;Park, Hyo Jun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.405-411
    • /
    • 2020
  • In this paper, we designed the COS MEMS system for sensing the falling detection and explosive noise of fuse link in COS (Cut Out Switch) installing on the power distribution. This system analyzed the failure characteristics and an instantaneous breakdown of power distribution. Therefore, our system strengths the industrial competence and guaranties the stable power supply. In this paper, we applied BLE (Bluetooth Low Energy) technology which is suitable protocol for low data rate, low power consumption and low-cost sensor applications. We experimented with LSM6DSOX which is system-in-module featuring 3 axis digital accelerometer and gyroscope boosting in high-performance mode and enabling always-on low-power features for an optimal motion for the COS fuse holder. Also, we used the MP34DT05-A for gathering an ultra-compact, low power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface. The proposed COS MEMS system is developed based on nRF52 SoC (System on Chip), and contained a 3-axis digital accelerometer, a digital microphone, and a SD card. In this paper of experiment steps, we analyzed the performance of COS MEMS system with gathering the accelerometer raw data and the PDM (Pulse Data Modulation) data of MEMS microphone for broadcasting the failure of COS status.