• Title/Summary/Keyword: Sensor gas chromatography system

Search Result 14, Processing Time 0.028 seconds

Surface acoustic wave gas sensors by assembling gas chromatography column (가스 크로마토그래피를 부착한 표면탄성파 가스 센서)

  • Yoo, Beom-Keun;Park, Yong-Wook;Kang, Chong-Yun;Yoon, Seok-Jin;Choi, Doo-Jin;Kim, Jin-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • This paper presents characteristics of surface acoustic wave (SAW) gas sensor for detecting volatile gases such as acetone, methanol, and ethanol by measuring phase shift of output signal. A delay-line by combining with a center frequency of 200 MHz was fabricated on S-T Quartz substrates. Using gas chromatography column, the selectivity of the SAW gas sensor were introduced. Experimental results, which show the phase change of output signal under the absorption of volatile gas on sensor surface, were presented. This SAW gas sensor system may be well suited for a high performance electronic nose system.

Rapid Freshness Evaluation of Mackerel Scomber japonicus Using Sensor Gas Chromatography System (Sensor Gas Chromatography 시스템을 이용한 고등어(Scomber japonicas)의 신속한 신선도 평가 방법)

  • Choi, Jeong-Wook;Lee, Min-Kyeong;Hong, Chang-Wook;Choi, Jae-Hyuk;Jang, Myung-Kee;Kim, Koth-Bong-Woo-Ri;Kim, Go-Eun;Park, Ga-Ryeong;Ahn, Dong-Hyun;Nam, Taek-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.837-840
    • /
    • 2017
  • We developed a method to rapidly evaluate the freshness of fish using a sensor gas chromatography (SGC) system. Mackerel Scomber japonicus was stored at $4^{\circ}C$ for 12 days to create an environment similar to the natural decomposition process. Trimethylamine (TMA) content in mackerel muscle was measured at 3-day intervals using a spectrophotometer. The gas-phase concentration of TMA in whole mackerel was also determined using an SGC system. The muscle TMA content increased over time during storage, as did the gas-phase concentration of TMA. Therefore, this study demonstrated that an SGC system can be used to rapidly measure the gas-phase concentration of TMA in fish during processing.

Surface Acoustic Wave Gas Sensor (탄성표면파 가스센서)

  • Yoo, Beom-Keun;Park, Yong-Wook;Kang, Chong-Yun;Kim, Jin-Sang;Choi, Doo-Jin;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.251-252
    • /
    • 2006
  • A development of surface acoustic wave gas sensor to detecting volatile gas has been observed by monitoring output signal as function of time onto the network analyzer. The SAW sensor with a center frequency of 200MHz was fabricated on $42^{\circ}$ S-T Quartz substrates. Using the gas chromatography column has been selectivity. Experimental results, which show the phase change of output signal under the absorption of volatile gas onto sensors, were presented. The proposed sensor has the properties of high sensitivity compare to the conventional SAW gas sensor and chemical selectivity. Thus, it is thought these results are applicable for use in sensor array of an high performance electronic nose system.

  • PDF

Analysis Method of Volatile Sulfur Compounds Utilizing Separation Column and Metal Oxide Semiconductor Gas Sensor

  • Han-Soo Kim;Inho Kim;Eun Duck Park;Sang-Do Han
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.125-133
    • /
    • 2024
  • Gas chromatography (GC) separation technology and metal oxide semiconductor (MOS) gas sensors have been integrated for the effective analysis of volatile sulfur compounds (VSCs) such as H2S, CH3SH, (CH3)2S, and (CH3)2S2. The separation and detection characteristics of the GC/MOS system using diluted standard gases were investigated for the qualitative and quantitative analysis of VSCs. The typical concentrations of the standard gases were 0.1, 0.5, 1.0, 5.0, and 10.0 ppm. The GC/MOS system successfully separated H2S, CH3SH, (CH3)2S, and (CH3)2S2 using a celite-filled column. The reproducibility of the retention time measurements was at a 3% relative standard deviation level, and the correlation coefficient (R2) for the VSC concentration was greater than 0.99. In addition, the chromatograms of single and mixed gases were almost identical.

Analysis of COPD Patient's Exhaled Breath Using Sensor Array (센서 어레이를 사용한 COPD 환자의 호기분석)

  • Yu, Joon-Boo;Lee, Shin-Yup;Jeon, Jin-Young;Byun, Hyung-Gi;Lim, Jeong-Ok
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.219-222
    • /
    • 2013
  • The exhaled breath contains gases generated from human body. When disease occurs in the body, exhaled breath may include gas components released from disease metabolism. If we can find specific elements through analysis of the exhaled gases, this approach is an effective way to diagnose the disease. The lung function has a close relationship with exhalation. Exhaled gases from COPD (Chronic Obstructive Pulmonary Disease) patients can be analyzed by gas chromatography-mass spectroscopy (GC-MS) and a gas sensor system. The exhaled breath for healthy person and COPD patients had different components. Significantly more benzendicarboxylic acid was detected from COPD patients than in healthy persons. In addition, patients had a variety of decane. Phosphorous compounds with different isomers were detected from patients. The results obtained by gas sensor system were processed by PCA (Principal Component Analysis). The PCA results revealed distinct difference between the patients and healthy people.

Exhaled Breath Analysis of Lung Cancer Patients Using a Metal Oxide Sensor

  • Yu, Joon-Boo;Byun, Hyung-Gi;Zhang, Sholin;Do, Seoung-Hun;Lim, Jeong-Ok;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.300-304
    • /
    • 2011
  • Exhaled breath gases include gases generated in the body. When there is disease in the body, exhalation can include gas components from the disease. If we can find these specific elements through analysis of the exhalation gases, this can be an effective way to diagnose the disease. The lung has a close relationship with exhalation. Lung cancer refers to malignant tumors which originate in the lungs. Exhalation from the lung causes direct jets of gas to be ejected through the mouth and nose, so by analyzing these jets it may be possible to diagnose lung cancer. In our study we attempt to diagnose lung cancer from patient's exhaled gases. Exhalation of lung cancer patients was analyzed using gas chromatography-mass spectroscopy(GC-MS) and the expiratory gas was also measured using a sensor system. The system was designed to use a metal oxide sensor and solid phase micro extraction(SPME) fiber. The GC-MS analysis of the healthy subject's and cancer patient's exhalation gases both showed the presence of decane in the breath of patients with lung cancer. In addition, the results from the sensor system showed significant difference between the lung cancer patients and the healthy subjects.

Analysis of Breath from Diabetic Patients Based on a One-chip-type Sensor Array

  • Yu, Joon-Boo;Jang, Byoung Kuk;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.221-224
    • /
    • 2019
  • Based on the results of studies on acetone excretion in diabetic patients, a one - chip sensors array was fabricated by combining acetone-selective sensor materials and volatile-organic-compound sensitive sensor materials. An electonic-nose was implemented using a sensor array and confirmed selectivity for five gases. In this system, the excretion of diabetic patients and controls was sampled with solid phase microextraction fiber and transferred to the sensor array. Although the control and diabetic patients were distinct, several samples failed. In the control group, the results of blood tests were normal, but patients were highly obese. In addition, the gas chromatography mass spectrometry results for the subjects revealed chemicals that are external factors.

Soft sensor design based on PLS with hybrid inner model (내적 조합 모델 PLS를 이용한 소프트 센서 설계)

  • Hong Sun Ju;Han Chong Hun
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.3
    • /
    • pp.49-53
    • /
    • 1998
  • It takes quite a long time for an analyzer, such as gas chromatography, to measure a bulk property of a system, which prevents on-line measurements. Also, the cost of installation and maintenance is very high. Consequently, some other means is needed for on-line measurements of properties and the development of soft sensors based on process variables like temperature and pressure is of great interest. In the field of gas industry, the development of a soft sensor which makes indirect on-line measurements of gas compositions and flow rate, is in progress. In this paper, we proposed a hybrid inner model PLS which improved the prediction performance by taking into account the data structure, as an empirical modeling algorithm. When applied to a design of a soft sensor of a distillation tower, the hybrid inner model PLS showed better prediction performance than other methods.

  • PDF

Implementation of a Portable Electronic Nose System for Field Screening (필드 스크린을 위한 휴대용 전자코 시스템의 구현)

  • Byun, Hyung-Gi;Lee, Jun-Sub;Kim, Jeong-Do
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.41-46
    • /
    • 2004
  • There is currently much interest in the development of instruments that emulate the senses of humans. Increasingly, there is demand for mimicking the human sense of smell, which is a sophisticated chemosensory system. An electronic nose system is applicable to a large area of industries including environmental monitoring. We have designed a protable electronic nose system using an array of commercial chemical gas sensors for recognizing and analyzing the various odours. In this paper, we have implemented a portable electronic nose system using an array of gas sensors for recognizing and analyzing VOCs (Volatile Organic Compounds) in the field. The accuracy of a portable electronic nose system may be lower than an instrument such as GC/MS (Gas Chromatography/Mass Spectrometer). However, a portable electronic nose system could be used on the field and showed fast response to pollutants in the field. Several different algorithms for odours recognition were used such as BP (Back-Propagation) or LM-BP (Levenberq-Marquardt Back-Propagation). We applied RBF (Radial Basis Function) Network for recognition and quantifying of odours, which has simpler and faster compared to the previously used algorithms such as BP and LM-BP.

Analysis of Volatile Flavor Compounds in Milk Using Electronic Nose System (전자코 시스템을 이용한 우유의 품질에 따른 휘발성 향기성분 분석)

  • Kang, Nae Kyung;Jun, Tae-Sun;Yang, Yoon Seok;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.320-325
    • /
    • 2014
  • Volatile flavor compounds from milk were analyzed and identified by using the analysis methods of headspace solid phase microextraction gas chromatography/mass spectrometry (HSPME-GC/MS) and electronic nose (E-Nose) system. About 30 volatile compounds were identified by HSPME-GC/MS for the fresh and off-flavor milk samples. Also, the correlation between rancidity and ageing days of milk was obtained by the aid of principal component analysis algorithm. It shows that the E-Nose system can identify the various types of milk flavor. These results imply that the analysis method based on the E-nose system can apply to the quality control of milk flavor and the rancidity.