• Title/Summary/Keyword: Sensor flow

Search Result 881, Processing Time 0.021 seconds

Light Modulation based on PPG Signal Processing for Biomedical Signal Monitoring Device (생체 정보 감시 장치를 위한 광변조 기법의 PPG 신호처리)

  • Lee, Han-Wook;Lee, Ju-Won;Jeong, Won-Geun;Kim, Seong-Hoo;Lee, Gun-Ki
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.6
    • /
    • pp.503-509
    • /
    • 2009
  • The development of technology has led to ubiquitous health care service, which enables many patients to receive medical services anytime and anywhere. For the ubiquitous health care environment, real-time measurement of biomedical signals is very important, and the medical instruments must be small and portable or wearable. So, such devices have been developed to measure biomedical signals. In this study, we develop the biomedical monitoring device which is sensing the PPG signal, one of the useful signal in the field of ubiquitous healthcare. We design a watch-like biomedical signal monitoring system without a finger probe to prevent the user's inconvenience. This system obtains the PPG from the radial artery using a sensor in the wrist band. But, new device developed in this paper is easy to get the motion artifacts. So, we proposed new algorithm removing the motion artifacts from the PPG signal. The method detects motion artifacts by changing the degree of brightness of the light source. If the brightness of the light source is reduced, the PPG pulses will disappear. When the PPG pulses have disappeared completely, the remaining signal is not the signal that results from the changing blood flow. We believe that this signal is the motion artifact and call it the noise reference signal. The motion artifacts are removed by subtracting the noise reference signal from the input signal. We apply this algorithm to the system, so we can stabilize the biomedical monitoring system we designed.

The Relationship between Oxygen Saturation and Color Alteration of a Compromised Skin Flap: Experimental Study on the Rabbit

  • Prasetyono, Theddeus O.H.;Adianto, Senja
    • Archives of Plastic Surgery
    • /
    • v.40 no.5
    • /
    • pp.505-509
    • /
    • 2013
  • Background The aim of this study was to collect important data on the time of oxygen saturation change in relation to skin flap color alteration using non-invasive pulse oximetry to evaluate its ability to provide continuous monitoring of skin flap perfusion. Methods An experimental study on the monitoring of blood perfusion of 20 tube-island groin flaps of 10 male New Zealand rabbits was performed using pulse oximetry. The animals were randomly assigned to one of two groups representing a blockage of either arterial or venous blood flow. The oxygen saturation change and clinical color alteration were monitored from the beginning of vessel clamping until the saturation became undetectable. The result was analyzed by the t-test using SSPS ver. 10.0. Results The mean times from the vessel clamping until the saturation became undetectable were $20.19{\pm}2.13$ seconds and $74.91{\pm}10.57$ seconds for the artery and vein clamping groups, respectively. The mean time of the clinical alteration from the beginning of vein clamping was $34.5{\pm}11.72$ minutes, while the alteration in flaps with artery clamping could not be detected until 2.5 hours after clamping. Conclusions The use of neonate-type reusable flex sensor-pulse oximetry is objective and effective in early detection of arterial and vein blockage. It provides real-time data on vessel occlusion, which in turn will allow for early salvaging. The detection periods of both arterial occlusion and venous congestion are much earlier than the color alteration one may encounter clinically.

A Study on integrated water management system based on Web maps

  • Choi, Ho Sung;Jung, Jin Young;Park, Koo Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.8
    • /
    • pp.57-64
    • /
    • 2016
  • Initial prevention activities and rapid propagation conditions is the most important to prevent diffusion of water pollution. If water pollutants flow into streams river or main stresm located in environmental conservation area or water intake facilities, we must predict immediately arrival time and the diffusion concentration to the proactive. National Institute of Environmental Research developed water pollution incident response prediction system linking dam and movable weir. the system is mathematical model which is updated daily. Therefore it can quickly predict the arrival time and the diffusion concentration when there are accident of oil spills and hazardous chemicals. Also we equipped with mathematical model and toxicity model of EFDC(Environmental Fluid Dynamics Code) to calculate the arrival time and the diffusion concentration. However these systems offer the services of an offline manner than real-time control services. we have ensured the reliability of data collection and have developed a real-time water quality measurement data transmission device by using the data linkage utilizing a mode bus communication and a commercial SCADA system, in particular, we implemented to be able to do real-time water quality prediction through information infrastructure of the water quality integrated management business created by utilizing the construction of the real-time prediction system that utilizes the data collected, the Open map, the visual representation using charts API and development of integrated management system development based on web maps.

Three-Dimensional Natural Convection from a Single Module on the Wall of a Vertical Parallel-Plate Channel (수직평행채널의 벽면에 부착된 단일모듈로부터의 3차원 자연대류 열전달)

  • Riu, K.J.;Lee, J.H.;Kim, H.W.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.29-41
    • /
    • 1999
  • Three-dimensional natural convective heat transfer in a vertical channel with a protruding single module was investigated experimentally. The particular interest was in the removal of thermal energy from the module by convective heat transfer. Hence radiative and conductive heat losses were estimated by using thermocouples and heat flux sensor respectively. The flow fields in the channel were visualized by means of a smoke-method. Also, local temperatures were measured by thermocouples inside the channel, along the vertical wall and module surface. It is found that convective heat transfer was promoted at the lower comer of the module and was decreased at the upper comer due to a recirculation zone. A general correlation of the critical channel ratios was found as a function of Rayleigh number. For the range of $8.28{\times}10^3<Ra^*_c<3.48{\times}10^6$, a useful correlation for the mean Nusselt number was proposed as a function of modified channel Rayleigh number.

  • PDF

Waterjet Propulsion Model Experiment for Catamaran Ship (쌍동선의 워터제트 추진 모형시험)

  • Choi, G.I.;Min, K.S.;Ann, Y.W.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.65-76
    • /
    • 1996
  • A screw propeller is usually accepted as a propulsor of many kinds of ships. However, for high speed vessels, screw propeller has large cavitation area on the blades so propeller efficiency is decreased and erosion can be happened. To avoid this problem, supercavitating propeller and waterjet are generally used for high speed vessels. In this paper, we introduced the self-propulsion test procedure which has been developed for high speed vessels in Hyundai Maritime Research Institute. The model ship used in experiment represents catamaran about 5.3 m in length. To minimize the experimental errors, two impellers were driven by a single motor. Thrust was calculated by converting the measured pressure to flow rates at the nozzle exit. The test procedure is composed of resistance test, self propulsion test and analysis. In order to measure the pressure, pressure tabs were installed around the nozzle exit and connected to the pressure sensor by vinyl tube.

  • PDF

A Study on Combustion and Heat Transfer in Premixed Impinging Flames of Syngas(H2/CO)/Air Part II: Heat Transfer Characteristics (합성가스(H2/CO)/공기 예혼합 충돌화염의 연소 및 열전달 연구 Part II : 열전달 특성)

  • Sim, Keunseon;Jeong, Byeonggyu;Lee, Yongho;Lee, Keeman
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.59-71
    • /
    • 2014
  • An experimental study has been conducted to investigate the heat transfer characteristics of laminar syngas/air mixture with 10% hydrogen content impinging normally to a flat plate of cylinder. Effects of impinging distance, Reynolds number and equivalence ratio as major parameters on heat fluxes of stagnation point and radial direction were examined experimentally by the direct photos and data acquisitions from heat flux sensor. In this work, we could find the incurved flame behavior of line shaped inner top-flame in very closed distance between flat plate and burner exit, which has been not reported from general gas-fuels. There were 3 times of maximum and 2 times minimum heat flux of stagnation point with respect to the impinging distance for the investigation of Reynolds number and equivalence ratio effect. It was confirmed that the maximum heat flux of stagnation point in 1'st and 2'nd peaks increased with the increase of the Reynolds number due to the Nusselt number increment. There was a third maximum rise in the heat flux of stagnation point for larger separation distances and this phenomenon was different each for laminar and turbulent condition. The heat transfer characteristics between the stagnation and wall jet region in radial heat flux profiles was investigated by the averaged heat flux value. It has been observed that the values of averaged heat flux traced well with the characteristics of major parameters and the decreasing of averaged heat flux was coincided with the decreasing trend of adiabatic temperature in spite of the same flow condition, especially for impinging distance and equivalence ratio effects.

Pulsatile Pressure Distribution on the Snubber of Reciprocating Compressor (왕복동식 압축기의 스너버내 맥동압 분포)

  • Lee, Gyeong-Hwan;Rahman, Mohammad-Shiddiqur;Chung, Han-Shik;Jung, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.606-611
    • /
    • 2007
  • Pulsation is an inherent phenomenon in reciprocating compressors. It interacts with piping to cause vibrations and performance problems. Indiscriminately connecting to a compressor can be dangerous and cost money in the form of broken equipment and piping, poor performance, inaccurate metering, unwanted vibration, and sometimes noise. Piping connected to a compressor can materially affect the performance and response. To minimize these detrimental effects, reciprocating compressor system should be equipped by pulsation suppression system. This study discusses pressure pulsation phenomena occurred in a reciprocating compressor system. An experiment applied air compressor unit, as pulsating pressure generator, has been done. The compressor was connected sequentially to a snubber model and pressure tank. Sensor probes were placed on the inlet and outlet pipes of snubber. Compressor was driven by a motor controlled by a frequency regulator. The experiment was conducted by adjusting the regulator at 40Hz. General information about an internal gas flow can be achieved by numerical analysis approach. Information of the velocity, pressure and turbulence kinetic energy distribution are presented in this paper. Based on this result, the design improvement might be done.

  • PDF

A Study on Vehicle Tracking System for Intelligent Transport System (지능형 교통시스템을 위한 자동차 추적에 관한 연구)

  • Seo, Chang-Jin;Yang, Hwang-Kyu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.63-68
    • /
    • 2004
  • In this paper, we propose a method about the extraction of vehicle and tracking trajectory for moving vehicle tracking system in road. This system applied to the monitoring system of the traffic flow for ATMS(advanced traffic management system) of ITS(intelligent transport system). Also, this system can solve the problem of maintenance of loop sensor. And we detected vehicle using differential image analysis. Because of the road environment changes by real time. Therefore, the method to use background image is not suitable. And we used Kalman filter and innovation value and variable search area for vehicle tracking system. Previous method using fixed search area is sensitive to the moving trajectory and the speed of vehicle. Simulation results show that proposed method increases the possibility of traffic measurement more than fixed area traffic measurement system.

A Study on Body Temperature Measurement of Woven Textile Electrode Using Lock-In-Amp based on Microprocessor (마이크로 프로세서 기반 Lock-In-Amp를 이용한 텍스타일 직물전극의 체온 측정에 관한 연구)

  • Lee, Kang-Hwi;Lee, Sung-Su;Lee, Jeong-Whan;Song, Ha-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1141-1148
    • /
    • 2017
  • Generally, a thermistor made by sintering a metal oxide is widely used to measure the ambient temperature. This thermistor is widely used not only for industrial use but also for medical use because of its excellent sensitivity, durability, temperature change characteristics and low cost. In particular, the normal body temperature is 36.9 degrees relative to the armpit temperature, and it is most closely related to the circulating blood flow. Previous studies have shown that body temperature changes during biomechanical changes and body temperature changes by anomalous signs or illnesses. Therefore, in this study, we propose a Lock-In-Amp design to detect minute temperature changes of clothing and thermistor wired by a preacher as a method to regularly measure body temperature in daily life. Especially, it is designed to measure the minute resistance change of the thermistor according to body temperature change even in a low-cost microprocessor environment by using a micro-processor-based Lock-In-Amp, and a jacquard and the thermistor is arranged so as to be close to the side, so that the reference body temperature can be easily measured. The temperature was measured and stored in real time using short-range wireless communication for non - restraint temperature monitoring. A baby vest was made to verify its performance through temperature experiments for infants. The measurement of infant body temperature through the existing skin sensor or thermometer has limitations in monitoring infant body temperature for a long time without restriction. However, it can be overcome by using the embroidery fabric based micro temperature monitoring wireless monitoring device proposed in this study.

Study on super-hydrophobic electro-spray micro thruster and measurement of micro scale thrust (초소수성 전기 분무 마이크로 추진 장치 및 마이크로 추력 측정)

  • Lee, Young-Jong;Yoo, Yong-Hoon;Tran, Si Bui Quang;Kim, Sang-Hoon;Park, Bae-Ho;Buyn, Do-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • In this article, we fabricated polytetrafluoroethylene(PTFE) nozzle treated by ion beam, in order to fabricate polymer based electrospray micro thruster with super hydrophobic nozzle. To obtain the super hydrophobic surface, PTFE surface is treated by argon and oxygen plasma treatment process. The optimal condition is investigated argon and oxygen flow rate as well as the paalied energy level for the treatment process. Fabricated nozzle was evaluated by measuring contact angle, and the surface morphology was examined by using scanning electron microscope(SEM) and atomic force microscope(AFM). We observe that jetting becomes more stable and repeatable on the treated nozzle. And to evaluate performance of fabricated nozzle, we measure micro scale thrust using a cantilever and a nozzle treated by ion beam laser displacement sensor.