• Title/Summary/Keyword: Sensor faults

Search Result 208, Processing Time 0.028 seconds

A Fault Detection Method of Redundant IMU Using Modified Principal Component Analysis

  • Lee, Won-Hee;Park, Chan-Gook
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.398-404
    • /
    • 2012
  • A fault detection process is necessary for high integrity systems like satellites, missiles and aircrafts. Especially, the satellite has to be expected to detect faults autonomously because it cannot be fixed by an expert in the space. Faults can cause critical errors to the entire system and the satellite does not have sufficient computation power to operate a large scale fault management system. Thus, a fault detection method, which has less computational burden, is required. In this paper, we proposed a modified PCA (Principal Component Analysis) as a powerful fault detection method of redundant IMU (Inertial Measurement Unit). The proposed method combines PCA with the parity space approach and it is much more efficient than the others. The proposed fault detection algorithm, modified PCA, is shown to outperform fault detection through a simulation example.

Development of Fuzzy Expert System for Fault Diagnosis in a Drum-type Boiler System of Fossil Power Plant (화력 발전소 드럼형 보일러 시스템의 고장 진단을 위한 퍼지 전문가 시스템의 개발)

  • ;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.53-66
    • /
    • 1994
  • In this paper, a fuzzy expert system is developed for fault diagnoisis of a drum-type boiler system in fossil power plants. The develped fuzzy espert system is composed of knowledge base, fuzzification module, knowledge base process module, knowledge base management module, inference module, and linguistic approximation module. The main objective of the fuzzy expert system is to check the states of the system including the drum level and detect faults such as the feedwater flow sensor fault, feedwater flow control valve fault, and water wall bube rupture. The fuzzy expert system diagnoses faults using process values, manipulated values, and knowledge base which is built via interviews and questionaries with the experts on the plant operations. Finally, the validity of the developed fuzzy expert system is shown via experiments using the digital simulator for boiler system is Seoul Power Plant Unit 4.

  • PDF

A study on the fault detection and accomodation in linear feedback control systems (선형궤환제어계의 고장검출 및 보상시스템설계에 관한 연구)

  • 이기상;배상욱;박의성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.139-144
    • /
    • 1987
  • The problem of process(Sensor) fault management in Observer Based Control System are considered and structures of Fault Tolerant Observer based Control Systems (FMCS) that function well in the face of the faults are proposed. The FTOCSs include detection logic unit and an additional observer driven by residuals of primary observer and estimate estimation errors of primary observer and fault variables. Since the FTOCSs have the ability to detect and accomodate the faults the original control objectives can be accomplished without considerable control performance deterioration even in the faulty environments. Therefore, the Proposed FMCSs can effectively be used for enhancing the functional reliability of the Observer Based Control Systems.

  • PDF

Comparison of Fault Detection Methods for the BLDC Motor Using the Current Sensor (전류센서를 이용한 BLDC 전동기 권선 결함 검출 방법 비교)

  • Lee, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1115-1127
    • /
    • 2010
  • Several methods have been applied to detect winding faults (turn-to-turn short). The representative approaches have been focusing on current signals. The current signal can give important information to extract features and to detect faults. In this study, current sensors were installed to measure signals for fault detection of BLDC motors. Therefore, it is necessary to select proper feature extraction methods among the popular methods that use current signals.

An Experimental Study on Fault Detection and Diagnosis Method for a Water Chiller Using Bayes Classifier (베이즈 분류기를 이용한 수냉식 냉동기의 고장 진단 방법에 관한 실험적 연구)

  • Lee, Heung-Ju;Chang, Young-Soo;Kang, Byung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.36-41
    • /
    • 2008
  • Fault detection and diagnosis(FDD) system is beneficial in equipment management by providing the operator with tools which can help find out a failure of the system. An experimental study has been performed on fault detection and diagnosis method for a water chiller. Bayes classifier, which is one of classical pattern classifiers, is adopted in deciding whether fault occurred or not. FDD algorithm can detect refrigerant leak failure, when 20% amount of charged refrigerant for normal operation leaks from the water chiller. The refrigerant leak failure caused COP reduction by 6.7% compared with normal operation performance. When two kinds of faults, such as a decrease in the mass flow rate of cooling water and temperature sensor fault of cooling water inlet, are detected, COP is a little decreased by these faults.

  • PDF

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

Effective Techniques for Diagnosis and Test of Hard-to-Detect Faults in Analog Circuits (아날로그 회로의 난검출 고장을 위한 효과적인 진단 및 테스트 기법)

  • Lee, Jae-Min
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2009
  • Testing of analog(and mixed-signal) circuits has been a difficult task for test engineers and effective test techniques to solve these problems are required. This paper develops a new technique which increases fault detection and diagnosis rates for analog circuits by using extended MTSS (Modified Time Slot Specification) technique based on MTSS proposed by the author. High performance current sensors with digital outputs are used as core components for these techniques. A fault diagnosis structure with minimal hardware overhead in ATE is also described.

  • PDF

Losses Comparison and Analysis for Fault Modes of Grid-connected Photovoltaic System (계통연계형 태양광발전 시스템의 고장유형별 손실 비교분석)

  • So, Jung-Hun;Ko, Suk-Whan;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.23-32
    • /
    • 2017
  • This paper presents losses comparison and analysis results for different types of fault modes of grid-connected photovoltaic system generated for long-term operation. The approach of losses comparison and analysis by faults is to identify relationship between measured and estimated values of five loss factors which are quantified from irradiance to system output power. This paper presents the symptom results for faults such as snow, shading, sensor defect, blackout, soiling and so on from three years or more monitored data. These results will indicate that it is useful to develop fault detection and diagnosis tool to enhance capacity factor and save operation and maintenance cost of grid-connected photovoltaic system in the field.

A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System (종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬)

  • 이경수;문일기;안장모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.216-221
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.

A Fault Diagnosis and Fault Handling Algorithm for a Vehicle Cruise Control System (종방향 차량 주행 시스템의 고장 진단 및 처리 알고리듬)

  • 이경수;문일기;안장모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.215-215
    • /
    • 2004
  • This paper describes a fault detection and fault handling algorithm to be used in a longitudinal vehicle cruise control systems. The fault diagnosis system consists of two structures to generate proper residuals and to find that which component has a fault. A systematic design of the fault diagnosis system using model-based techniques is presented. A linear observer is used to create a set of signals sensitive to faults in a radar sensor. The fault handling system consists of two structures to compensate for faults and degraded system performance. Simulation results show that the algorithm is effective for a fault diagnosis and handling in a longitudinal vehicle cruise control system.