• Title/Summary/Keyword: Sensor embedded type

Search Result 86, Processing Time 0.029 seconds

Reagent Cabinet Danger Priority Based Reagent Cabinet Safety Management System (시약장 위험 우선순위 기반 시약장 안전 관리 시스템)

  • Choi, Hyungwook;Lee, Jongwon;Kim, Changsu;Ryu, Seunghan;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.727-728
    • /
    • 2017
  • Recently, various accidents caused by reagents in laboratories have demanded a safety management system suitable for the danger situation. The existing system operated the equipment according to the temperature and humidity change inside the reagent cabinet, but the operation of the device corresponding to the danger situation and the countermeasures against many dangerous situations are insufficient. In order to solve this problem, this paper proposes a reagent cabinet safety management system based on the reagent cabinet danger priority in happen of accidents caused by reagents under management. The danger priority is type of reagents and selected by the danger situation that can be caused by the reagents. If a danger situation occurs, operate the device according to the selected danger priority and the type of danger situation. It is considered that the reagent cabinet can be safely managed by checking the danger situation in the reagent cabinet and operating the device according to the danger priority.

  • PDF

Bleeding characteristics of coupling materials for installation of acoustic emission (AE) sensor (AE 센서 설치를 위한 커플링 재료의 블리딩 특성)

  • Lee, Jong-Won;Kim, Hyunwoo;Kim, Min-Koan;Oh, Tae-Min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.635-650
    • /
    • 2017
  • Acoustic emission (AE) sensors have broadly used to monitor the damage of underground structures and tunnels. The reliability of measured signal is determined by the coupling condition of the AE sensors which are embedded in the target underground structure. To secure the reliability of health monitoring results, it is important to understand the characteristics of the coupling materials. In this study, laboratory tests were performed using portland cement, micro cement, and gypsum as coupling materials in order to verify the bleeding characteristics. The effective parameters for bleeding were determined to be water-cement ratio, material type, curing time, and injected volume of coupling materials. As a results of the experimental study, the bleeding rate increases with an increase in a water-cement ratio and an injected volume; for portland cement, water-cement ratio and injected volume effects are larger than the micro cement. However, curing time is not much effective for occurrence of the bleeding phenomenon. It is anticipated that this study may be useful for the selection of suitable coupling materials for installation of acoustic emission sensors.

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.

Bicycle Riding-State Recognition Using 3-Axis Accelerometer (3축 가속도센서를 이용한 자전거의 주행 상황 인식 기술 개발)

  • Choi, Jung-Hwan;Yang, Yoon-Seok;Ru, Mun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.63-70
    • /
    • 2011
  • A bicycle is different from vehicles in the structure that a rider is fully exposed to the surrounding environment. Therefore, it needs to make use of prior information about local weather, air quality, trail road condition. Moreover, since it depends on human power for moving, it should acquire route property such as hill slope, winding, and road surface to improve its efficiency in everyday use. Recent mobile applications which are to be used during bicycle riding let us aware of the necessity of development of intelligent bicycles. This study aims to develop a riding state (up-hill, down-hill, accelerating, braking) recognition algorithm using a low-power wrist watch type embedded system which has 3-axis accelerometer and wireless communication capability. The developed algorithm was applied to 19 experimental riding data and showed more than 95% of correct recognition over 83.3% of the total dataset. The altitude and temperature sensor also in the embedded system mounted on the bicycle is being used to improve the accuracy of the algorithm. The developed riding state recognition algorithm is expected to be a platform technology for intelligent bicycle interface system.

Experimental Evaluation of Prestress Force in Tendons for Prestressed Concrete Girders using Sensors (계측 센서를 활용한 PSC 거더 텐던의 긴장력 측정 실험)

  • Shin, Kyung-Joon;Park, Young-Ung;Lee, Seong-Cheol;Kim, Yun Yong;Lee, Hwan-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.715-722
    • /
    • 2015
  • The prestressing force has not been managed after construction nevertheless it is one of the importrant factors that maintain the structural safety of PSC girder bridges. The prestressing force is just measured during construction using jacking device and after that, it can not be managed practically. For this reason, this study investigated the measurements of prestress using embedded sensors that can be available now with an ultimate goal to propose smart prestressed girders that can measure the prestress from the birth to the end of service life. 4 types of sensors were installed on the small prestressed girders, and the applicability and the accuracy of those sensors were tested while the prestress was applied to the girders. The results show that a center-hole type loadcell has a tendency to measure a prestressing force higher than a reference value, especially when it is loaded with an eccentricity. a EM sensor shows several advantages that has a good practical accuracy, that can be installed anyplace along the tendons.

Development of New Ocean Radiation Automatic Monitoring System (새로운 해양 방사선 자동 감시 시스템의 개발)

  • Kim, Jae-Heong;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.743-746
    • /
    • 2019
  • In this paper we proposed a new ocean radiation automatic monitoring system. The proposed system has the following characteristics: First, using NaI + PVT mixed detectors, the response speed is fast and precision analysis is possible. Second, the application of temperature compensation algorithm to scintillator-type sensors does not require additional cooling devices and enables stable operation in the changing ocean environment. Third, since cooling system is not needed, electricity consumption is low, and electricity can be supplied reliably by utilizing solar energy, which can be installed at the observation deck of ocean environment. Fourth, using GPS and wireless communications, accurate location information and real-time data transmission function for measurement areas enables immediate warning response in the event of nuclear accidents such as those involving neighboring countries. The results tested by the authorized testing agency to assess the performance of the proposed system were measured in the range of $5{\mu}Sv/h$ to 15mSv/h, which is the highest level in the world, and the accuracy was determined to be ${\pm}8.1%$, making normal operation below the international standard ${\pm}15%$. The internal environmental grade (waterproof) was achieved, and the rate of variation was measured within 5% at operating temperature of $-20^{\circ}C$ to $50^{\circ}C$ and stability was verified. Since the measured value change rate was measured within 10% after the vibration test, it was confirmed that there will be no change in the measured value due to vibration in the ocean environment caused by waves.