• Title/Summary/Keyword: Sensor based

Search Result 10,169, Processing Time 0.036 seconds

Decision method for rule-based physical activity status using rough sets (러프집합을 이용한 규칙기반 신체활동상태 결정방법)

  • Lee, Young-Dong;Son, Chang-Sik;Chung, Wan-Young;Park, Hee-Joon;Kim, Yoon-Nyun
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.432-440
    • /
    • 2009
  • This paper presents an accelerometer based system for physical activity decision that are capable of recognizing three different types of physical activities, i.e., standing, walking and running, using by rough sets. To collect physical acceleration data, we developed the body sensor node which consists of two custom boards for physical activity monitoring applications, a wireless sensor node and an accelerometer sensor module. The physical activity decision is based on the acceleration data collected from body sensor node attached on the user's chest. We proposed a method to classify physical activities using rough sets which can be generated rules as attributes of the preprocessed data and by constructing a new decision table, rules reduction. Our experimental results have successfully validated that performance of the rule patterns after removing the redundant attribute values are better and exactly same compare with before.

Unsynchronized Duty-cycle Control for Sensor Based Home Automation Networks

  • Lee, Dong-Ho;Chung, Kwang-Sue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1076-1089
    • /
    • 2012
  • Home automation networks are good environments for merging sensor networks and consumer electronics technologies. It is very important to reduce the energy consumption of each sensor node because sensor nodes operate with limited power based on a battery that cannot be easily replaced. One of the primary mechanisms for achieving low energy operation in energy-constrained wireless sensor networks is the duty-cycle operation, but this operation has several problems. For example, unnecessary energy consumption occurs during synchronization between transmission schedules and sleep schedules. In addition, a low duty-cycle usually causes more performance degradation, if the network becomes congested. Therefore, an appropriate control scheme is required to solve these problems. In this paper, we propose UDC (Unsynchronized Duty-cycle Control), which prevents energy waste caused by unnecessary preamble transmission and avoids congestion using duty-cycle adjustment. In addition, the scheme adjusts the starting point of the duty-cycle in order to reduce sleep delay. Our simulation results show that UDC improves the reliability and energy efficiency while reducing the end-to-end delay of the unsynchronized duty-cycled MAC (Media Access Control) protocol in sensor-based home automation networks.

A Pattern-based Query Strategy in Wireless Sensor Network

  • Ding, Yanhong;Qiu, Tie;Jiang, He;Sun, Weifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1546-1564
    • /
    • 2012
  • Pattern-based query processing has not attracted much attention in wireless sensor network though its counterpart has been studied extensively in data stream. The methods used for data stream usually consume large memory and much energy. This conflicts with the fact that wireless sensor networks are heavily constrained by their hardware resources. In this paper, we use piece wise representation to represent sensor nodes' collected data to save sensor nodes' memory and to reduce the energy consumption for query. After getting data stream's and patterns' approximated line segments, we record each line's slope. We do similar matching on slope sequences. We compute the dynamic time warping distance between slope sequences. If the distance is less than user defined threshold, we say that the subsequence is similar to the pattern. We do experiments on STM32W108 processor to evaluate our strategy's performance compared with naive method. The results show that our strategy's matching precision is less than that of naive method, but our method's energy consumption is much better than that of naive approach. The strategy proposed in this paper can be used in wireless sensor network to process pattern-based queries.

An Implementation of Context Data Monitoring System based on Ubiquitous Sensor Network (유비쿼터스 센서 네트워크 기반의 상황 정보 모니터링 시스템 구현)

  • Lee, Ki-Wook;Sung, Chang-Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.259-265
    • /
    • 2006
  • As a core area of the new computing paradigm, the Ubiquitous Sensor Network Technology utilizes a wireless sensor networking which can be applied to the Context Information Monitoring System. When the technology is used in a poor user-environment for monitoring purposes, it can cost-effectively gather the context data on real-time basis, analyze the information gathered, effectively response to the user situation, and execute orders to create environmental factors desired by the user. This study structures a system able to monitor information in regards to a user-environment based on wireless-node sensor technology coupled with the Ubiquitous Sensor Network Technology. The proposed system requires a minimal collection of data without continuous monitoring. Monitoring periodically, it can sense the user-environment more efficiently than the existing monitoring technologies based on the wire-communication technology.

  • PDF

Virtual Euc1idean Point based Multicast routing scheme in Underwater Acoustic sensor networks (수중 센서 네트워크에서 가상의 유클리디언 포인트를 이용한 멀티캐스트 전송기법)

  • Kim, Tae-Sung;Park, Kyung-Min;Kim, Young-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.7B
    • /
    • pp.886-891
    • /
    • 2011
  • Multicast has been a key routing service for efficient data dissemination in underwater acoustic sensor networks. In sensor networks, there are several multicast routing protocol which reflects sensor network nature. However, existing routing scheme was not targeted at underwater acoustic sensor networks which is hard to provide battery continually. Therefore, a specialized routing algorithm is essential for acoustic sensor networks. In this paper, we propose angle aided multicast routing algorithm for decreasing routing computation complexity, including virtual Euclidean Steiner point. Simulation results show better performance than exist routing Position Based Multicast, Geographic Multicast Routing. such as low computation capability and limited power consumption.

Parylene membrane based chemomechanical explosive sensor (패럴린 박막을 이용한 기계화학적 폭발물 센서)

  • Shin, Jae-Ha;Lee, Sung-Jun;Cha, Mi-Sun;Kim, Mun-Sang;Lee, Jung-Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.497-503
    • /
    • 2010
  • This paper reports a chemomechanical explosive sensor based on a thin polymer membrane. The sensor consists of thin parylene membrane and electrodes. Parylene membrane is functionalized with 4-mercaptophenol which interacts strongly with nitrotoluene based explosives. The membrane deflection caused by molecular interaction between the surface and explosives is monitored by capacitance between the membrane and the substrate. To measure the capacitance, electrodes are formed on the membrane and the substrate. While the previous cantilever system requires a bulky optical measuring system, this purely electric monitoring method offers a compact and effective system. Thus, this explosive sensor can be readily miniaturized and used in the field. The developed sensor can reliably detect dinitrotoluene and its limit of detection is evaluated as approximately 110 ppb.

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

A Data Gathering Approach for Wireless Sensor Network with Quadrotor-based Mobile Sink Node

  • Chen, Jianxin;Chen, Yuanyuan;Zhou, Liang;Du, Yuelin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2529-2547
    • /
    • 2012
  • In this paper, we use a quadrotor-based mobile sink to gather sensor data from the terrestrial deployed wireless sensor network. By analyzing the flight features of the mobile sink node, we theoretically study the flight constraints of height, velocity, and trajectory of the mobile sink node so as to communicate with the terrestrial wireless sensor network. Moreover, we analyze the data amount which the mobile sink can send when it satisfies these flight constraints. Based on these analysis results, we propose a data acquisition approach for the mobile sink node, which is discussed detailed in terms of network performance such as the transmission delay, packet loss rate, sojourning time and mobile trajectory when given the flying speed and height of the mobile sink node. Extensive simulation results validate the efficiency of the proposed scheme.

Trends in Device DNA Technology Trend for Sensor Devices (센서 기반의 디바이스 DNA 기술 동향)

  • Kim, Juhan;Lee, Sangjae;Oh, Mi Kyung;Kang, Yousung
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Just as it is possible to distinguish people by using physical features, such as fingerprints, irises, veins, and faces, and behavioral features, such as voice, gait, keyboard input pattern, and signatures, the an IoT device includes various features that cannot be replicated. For example, there are differences in the physical structure of the chip, differences in computation time of the devices or circuits, differences in residual data when the SDRAM is turned on and off, and minute differences in sensor sensing results. Because of these differences, Sensor data can be collected and analyzed, based on these differences, to identify features that can classify the sensors and define them as sensor-based device DNA technology. As Similar to the biometrics, such as human fingerprints and irises, can be authenticatedused for authentication, sensor-based device DNA can be used to authenticate sensors and generate cryptographic keys that can be used for security.

Semijoin-Based Spatial Join Processing in Multiple Sensor Networks

  • Kim, Min-Soo;Kim, Ju-Wan;Kim, Myoung-Ho
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.853-855
    • /
    • 2008
  • This paper presents an energy-efficient spatial join algorithm for multiple sensor networks employing a spatial semijoin strategy. For optimization of the algorithm, we propose a GR-tree index and a grid-ID-based spatial approximation method, which are unique to sensor networks. The GR-tree is a distributed spatial index over the sensor nodes, which efficiently prunes away the nodes that will not participate in a spatial join result. The grid-ID-based approximation provides great reduction in communication cost by approximating many spatial objects in simpler forms. Our experiments demonstrate that the algorithm outperforms existing methods in reducing energy consumption at the nodes.

  • PDF