• Title/Summary/Keyword: Sensor and Sensor Interface Design

Search Result 229, Processing Time 0.021 seconds

LabVIEW-based User Interface Design for Multi-Integrated Navigation Systems (다중 통합항법 시스템을 위한 랩뷰 기반의 사용자 인터페이스 설계)

  • Jae Hoon Son;Junwoo Jung;Sang Heon Oh;JunMin Park;Dong-Hwan Hwang
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.75-83
    • /
    • 2024
  • In order to reduce the time and cost of developing a navigation system, a performance evaluation platform can be used. A User Interface (UI) is required to effectively evaluate the performance, which sets parameters and gives navigation sensor signals and data display, and also displays navigation results. In this paper, a LabVIEW-based UI design method for multi-integrated navigation systems is proposed and implementation results are presented. The UI consists of a signal and data generation part and a signal and data processing part. The signal and data generation part sets parameters for the signal and data generation and displays the navigation sensor signal and data generation results. The signal and data processing part sets parameters for the signal and data processing and displays the navigation results. The signal and data generation part and signal and data processing part are designed to satisfy the requirements of the UI for a performance evaluation of the navigation system. In order to show the usefulness of the proposed UI design method, parameters of the signal and data generation and the signal and data processing are set through the LabVIEW-based UI, and the Global Positioning System (GPS) signal and inertial measurement unit data generation results and the navigation results of a GPS Software Defined Receiver (SDR) and inertial navigation system are confirmed. The implementation results show that the proposed UI design method helps users conduct an effective performance evaluation of navigation systems.

TeloSIM: Instruction-level Sensor Network Simulator for Telos Sensor Node (TeloSIM: Telos 형 센서노드를 위한 명령어 수준 센서네트워크 시뮬레이터)

  • Joe, Hyun-Woo;Kim, Hyung-Shin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1021-1030
    • /
    • 2010
  • In the sensor network, many tiny nodes construct Ad-Hoc network using wireless interface. As this type of system consists of thousands of nodes, managing each sensor node in real world after deploying them is very difficult. In order to install the sensor network successfully, it is necessary to verify its software using a simulator beforehand. In fact Sensor network simulators require high fidelity and timing accuracy to be used as a design, implementation, and evaluation tool of wireless sensor networks. Cycle-accurate, instruction-level simulation is the known solution for those purposes. In this paper, we developed an instruction-level sensor network simulator for Telos sensor node as named TeloSlM. It consists of MSP430 and CC2420. Recently, Telos is the most popular mote because MSP430 can consume the minimum energy in recent motes and CC2420 can support Zigbee. So that TeloSlM can provide the easy way for the developers to verify software. It is cycle-accurate in instruction-level simulator that is indispensable for OS and the specific functions and can simulate scalable sensor network at the same time. In addition, TeloSlM provides the GUI Tool to show result easily.

Analysis of Low Frequency Noise Variation in Temperature Sensor With Bi2Mg2/3Nb4/3O7 (Bi2Mg2/3Nb4/3O7을 사용한 온도센서의 저주파 잡음 특성)

  • Cho, Il Hwan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.486-490
    • /
    • 2015
  • Sensitivity characteristics of temperature sensor with $Bi_2Mg_{2/3}Nb_{4/3}O_7$ (BMNO) layer were investigated with low frequency noise measurement. Temperature sensor with BMNO layer had high reliability and high sensitivity comparing with conventional MOS type temperature sensor. Annealing temperature variation effects with $600^{\circ}C$, $700^{\circ}C$ and $800^{\circ}C$ were measured and analyzed. Annealing temperature determines trap distribution and $700^{\circ}C$ annealing sample has different pattern comparing with other samples. Results of low frequency noise can offer the design guide of temperature sensor performance.

Design of Multi-Finger Flick Interface for Fast File Management on Capacitive-Touch-Sensor Device (정전기식 입력 장치에서의 빠른 파일 관리를 위한 다중 손가락 튕김 인터페이스 설계)

  • Park, Se-Hyun;Park, Tae-Jin;Choy, Yoon-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1235-1244
    • /
    • 2010
  • Most emerging smart phones support capacitive touch sensors. It renders existing gesture-based interfaces not suitable since they were developed for the resistive touch sensors and pen-based input. Unlike the flick gestures from the existing gesture interfaces, the finger flick gesture used in this paper reduces the workload about half by selecting the target and the command to perform on the target at a single touch input. With the combination with multi-touch interface, it supports various menu commands without having to learn complex gestures, and is suitable for the touch-based devices hence it minimizes input error. This research designs and implements the multi-touch and flick interface to provide an effective file management system on the smart phones with capacitive touch input. The evaluation proves that the suggested interface is superior to the existing methods on the capacitive touch input devices.

A Design and Implementation of Multimedia Pest Prediction Management System using Wireless Sensor Network (무선 센서 네트워크를 이용한 멀티미디어 병해충 예측 관리 시스템 설계 및 구현)

  • Lim, Eun-Cheon;Shin, Chang-Sun;Sim, Chun-Bo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2007
  • The majority of farm managers growing the garden products in greenhouse concern massively about the diagnosis and prevention of the breeding and extermination for pests. especially, the managing problem for pests turns up as main issue. In the paper, we first build a wireless sensor network with soil and environment sensors such as illumination, temperature and humidity. And then we design and implement multimedia pest predication and management system which is able to predict and manage various pest of garden products in greenhouse. The proposed system can support the database with information about the pests by building up wireless sensor network in greenhouse compared with existing high-priced PLC device as well as collect various environment information from soil, the interior of greenhouse, and the exterior of greenhouse. To verify the good capability of our system, we implemented several GUI interface corresponding desktop. web, and PDA mobile platform based on real greenhouse model. Finally, we can confirm that our system work well prediction and management of pest of garden products in greenhouse based on several platforms.

  • PDF

Design and performance study of fabry-perot filter based on DBR for a non-dispersive infrared carbon dioxide sensor (비분산적외선 CO2 센서를 위한 DBR기반의 패브리 페로-필터 설계 및 성능 연구)

  • Do, Nam Gon;Lee, Junyeop;Jung, Dong Geon;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.250-254
    • /
    • 2021
  • A highly sensitive and selective non-dispersive infrared (NDIR) carbon dioxide gas sensor requires achieving high transmittance and narrow full width at half maximum (FWHM), which depends on the interface of the optical filter for precise measurement of carbon dioxide concentration. This paper presents the design, simulation, and fabrication of a Fabry-Perot filter based on a distributed Bragg reflector (DBR) for a low-cost NDIR carbon dioxide sensor. The Fabry-Perot filter consists of upper and lower DBR pairs, which comprise multilayered stacks of alternating high- and low-index thin films, and a cavity layer for the resonance of incident light. As the number of DBR pairs inside the reflector increases, the FWHM of the transmitted light becomes narrower, but the transmittance of light decreases substantially. Therefore, it is essential to analyze the relationship between the FWHM and transmittance according to the number of DBR pairs. The DBR is made of silicon and silicon dioxide by RF magnetron sputtering on a glass wafer. After the optimal conditions based on simulation results were realized, the DBR exhibited a light transmittance of 38.5% at 4.26 ㎛ and an FWHM of 158 nm. The improved results substantiate the advantages of the low-cost and minimized process compared to expensive commercial filters.

DEVELOPMENT OF OCCUPANT CLASSIFICATION AND POSITION DETECTION FOR INTELLIGENT SAFETY SYSTEM

  • Hannan, M.A.;Hussain, A.;Samad, S.A.;Mohamed, A.;Wahab, D.A.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.827-832
    • /
    • 2006
  • Occupant classification and position detection have been significant research areas in intelligent safety systems in the automotive field. The detection and classification of seat occupancy open up new ways to control the safety system. This paper deals with a novel algorithm development, hardware implementation and testing of a prototype intelligent safety system for occupant classification and position detection for in-vehicle environment. Borland C++ program is used to develop the novel algorithm interface between the sensor and data acquisition system. MEMS strain gauge hermatic pressure sensor containing micromachined integrated circuits is installed inside the passenger seat. The analog output of the sensor is connected with a connector to a PCI-9111 DG data acquisition card for occupancy detection, classification and position detection. The algorithm greatly improves the detection of whether an occupant is present or absent, and the classification of either adult, child or non-human object is determined from weights using the sensor. A simple computation algorithm provides the determination of the occupant's appropriate position using centroidal calculation. A real time operation is achieved with the system. The experimental results demonstrate that the performance of the implemented prototype is robust for occupant classification and position detection. This research may be applied in intelligent airbag design for efficient deployment.

IO BOARD DESIGN OF NEXT GENERATION SATELLITE USING THE SPACE WIRE INTERFACE

  • Kwon Ki-Ho;Kim Day-Young;Choi Seung-Woon;Lee Jong-In
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.223-226
    • /
    • 2004
  • This paper presents a feasibility study of an advanced IO board design for the next generation of low-earth orbit satellites. Advanced IO board design includes sensor interface, NO, D/A, Digital Module, Serial Module etc, and allows to process increasing data rates between IO board and CPU board. The higher data rate involved in modem IO board additionally introduce issues such as noise, fault tolerance, command and data handling, limited pin count and power consumption problems. The experience in KOMPSAT-l and 2 program with this kind of problems resulted in using SMCS chip set, a high speed serial link technology based on IEEE-1355 (Space Wire Protocol) (ESA-ESTEC 2003, Parkes 1999), as a standard for next generation of satellite IO board design.

  • PDF

Solar Energy Harvesting Wireless Sensor Network Simulator (태양 에너지 기반 무선 센서 네트워크 시뮬레이터)

  • Yi, Jun Min;Kang, Min Jae;Noh, Dong Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.477-485
    • /
    • 2015
  • Most existing simulators for wireless sensor networks(WSNs) are modeling battery-based sensors and providing MAC and routing protocols designed for battery-based WSNs. However, recently, as energy harvesting sensor systems have been studied more extensively, there is an increasing need for appropriate simulators, but few related studies have employed such simulators. Unlike existing simulators, simulators for energy harvesting WSNs require a new energy model that is integrated with the energy-harvesting model, rechargeable battery model, and energy-consuming model. Additionally, it should enable the applications of the well-known MAC and routing protocols designed for energy-harvesting WSNs, as well as a user-friendly interface for convenience. In this work, we design and implement a user-friendly simulator for solar energy-harvesting WSNs.

A Design and Implementation of Personal Vessel Monitoring System Based on Context Aware (상황인식 기반 개인 선박 상태감시시스템 설계 및 구현)

  • Shin, Do-Sung;Lee, Seong-Ro
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.3
    • /
    • pp.112-118
    • /
    • 2011
  • Ship can be faced with more dangerous situations than ground vehicles due to the opened surroundings, sea. Therefore, it is very important to prevent the ship emergency by finding risk factor. In this paper, We propose context-aware monitoring system which that frequently check the condition of ship using the data that get through the installed sensor in the ship as gyro-sensor, strain-gage sensor. We analyzed sensor data through backpropagation algorithm and the Condition and Safety Information of sailing ship is transmitted to the crew's personal mobile device in the ship. Thus, moving crew can check the ship's condition in real time. As a result, we obtained about 95% accuracy for fire risk context and about 89% accuracy for body of Ship risk context in the simulated experiments.