• Title/Summary/Keyword: Sensor Transparency

Search Result 33, Processing Time 0.029 seconds

Design and Implementation of TinyOS Supporting Sensor Transparency of Sensor Nodes (센서노드의 센서 투명성을 지원하는 TinyOS의 확장)

  • So, Sun-Sup;Eun, Seong-Bae;Kim, Byung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.2127-2133
    • /
    • 2010
  • In this paper, we proposed an architecture for supporting sensor transparency in sensor node operating systems, design the standard APIs (Application Programming Interfaces) and sensor device abstraction to provide the sensor transparency and implemented the sensor transparency in the TinyOS, the most well known sensor node operating system. With the proposed sensor node operating system which can support the sensor transparency, application developers can develop the target applications independent to each sensor device by using the standard APIs provided by the sensor node operating system and the sensor device manufacturers also can develop sensor device drivers by using the standard hardware interfaces and HAL (Hardware Adaptation Layer) interfaces independent to the specific hardware platform of sensor nodes.

A Power Management Scheme for Sensors with MCU in Sleep Mode in Nano-Q+ (Nano-Q+에서 MCU 및 센서의 자동 슬립을 지원하는 전력 관리 기법)

  • So, Sun-Sup;Choi, Bok-Dong;Eun, Seong-Bae;Kim, Byung-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1928-1934
    • /
    • 2009
  • This paper proposes a power management scheme for sensor nodes in wireless sensor networks based on sensor node operating system supporting the sensor transparency, which can turn off the sensors when the MCU is in sleep mode. We classify the sensors in two types, that is, event sensors and polling sensors, to be able to decide whether the sensor is a type of sensors whose power supply can be turned off or not, and we design a new scheduler to support recognition of those different types of sensors. Implementing and evaluation of the scheduler and the power manager supporting sensor transparency are shown based on Nano-Q+.

Fabrication and characteristics of ITO thin films on CR39 substrate for transparent OTFT

  • Kwon, Sung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.229-233
    • /
    • 2007
  • The indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. The ITO thin films deposited at room temperature because CR39 substrate its glass-transition temperature is $130^{\circ}C$. The ITO thin films used bottom and top electrode and for organic thin film transparent transistors (OTFTs). The ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300-800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of the ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300-800 nm) measured without post annealing process and a low resistivity value $9.83{\times}10^{-4}{\Omega}cm$ was measured thickness of 300 nm. All fabrication process of ITO thin films did not exceed $80^{\circ}C$.

Development of Optical Strain Sensor with Nanostructures on a Poly-dimethylsiloxane (PDMS) Substrate (Poly-dimethylsiloxane (PDMS) 기판 위에 형성된 나노구조를 이용한 시각 인장센서의 개발)

  • Kim, Geon Hwee;Woo, Hyeonsu;Lim, Geunbae;An, Taechang
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.392-396
    • /
    • 2018
  • Structural color has many advantages over pigment based color. In recent years, researches are being conducted to apply these advantages to applications such as wearable devices. In this study, strain sensor, a kind of wearable device, was developed using structural color. The use of structural color has the advantage of not using energy and complex measuring equipment to measure strain rate. Wrinkle structure was fabricated on the surface of Poly-dimethylsiloxane (PDMS) and used it as a sensor which color changes according to the applied strain. In addition, a transmittance-changing sensor was developed and fabricated by synthesizing additional glass nanoparticles. Furthermore, a strain sensor was developed that is largely transparent at the target strain and opaque otherwise.

Capacitive Touch Sensor Pixel Circuit with Single a-InGaZnO Thin Film Transistor (단일 a-InGaZnO 박막 트랜지스터를 이용한 정전용량 터치 화소 센서 회로)

  • Kang, In Hye;Hwang, Sang Ho;Baek, Yeong Jo;Moon, Seung Jae;Bae, Byung Seong
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.133-138
    • /
    • 2019
  • The a-InGaZnO (a-IGZO) thin film transistor (TFT) has the advantages of larger mobility than that of amorphous silicon TFTs, acceptable reliability and uniformity over a large area, and low process cost. A capacitive-type touch sensor was studied with an a-IGZO TFT that can be used on the front side of a display due to its transparency. A capacitive sensor detects changes of capacitance between the surface of the finger and the sensor electrode. The capacitance varies according to the distance between the sensor plate and the touching or non-touching of the sensing electrode. A capacitive touch sensor using only one a-IGZO TFT was developed with the reduction of two bus lines, which made it easy to reduce the pixel pitch. The proposed sensor circuit maintained the amplification performance, which was investigated for various drive conditions.

Highly Sensitive and Transparent Touch Sensor by a Double Structure of Single Layer Graphene

  • Kim, Youngjun;Jung, Hyojin;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.228.2-228.2
    • /
    • 2014
  • Characteristics of high Fermi velocity, high mechanical strength, and transparency offer tremendous advantages for using graphene as a promising transparent conducting material [1] in electronic devices. Although graphene is a prospective candidate for touch sensor with strong mechanical properties [2] and flexibility, only few investigations have been carried out in the field of sensor as a device form. In this study, we suggest ultra-highly sensitive and transparent graphene touch sensor fabricated by single layer graphenes. One of the graphene layers is formed in the top panel as a disconnected graphene beam transferred on PDMS, and the other of the graphene layer is formed with line-patterning on the bottom panel of triple structure PET/PI/SiO2. The touch sensor shows characteristics of flexible. Its transmittance is approximately 75% where transmittance of the top panel and the bottom panel are 86.3% and 87%, respectively, at 550 nm wavelength. Sheet resistance of each graphene layer is estimated as low as $971{\Omega}/sq$. The results show that the conductance change rate (${\Delta}C/C0$) is $8{\times}105$ which depicts ultra-high sensitivity. Moreover, reliability characteristic confirms consistent behavior up to a 100-cycle test.

  • PDF

Laser Based Temperature Measurement of Rotating Disk Using Thermocolor (서모컬러를 이용한 회전 디스크의 레이저 온도 측정)

  • Na, Wonhwi;Yoo, JaeChern
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.49-53
    • /
    • 2013
  • In this paper, we proposed a laser-based non-contact temperature measuring method for high speed rotating polycarbonate (PC) disk using transparency change of thermocolor. The thermocolor has abilities to change color and transparency due to a change in temperature. The thermocolor is applied on one side of polyvinylidene fluoride (PVDF) membrane. The thermocolor applied membrane is attached to inside of reaction chamber in disk. An optical system consisted of a laser beam radiator and a laser photometer is installed. Laser is irradiated at the bottom side of disk and the transmitted laser beam is detected by the laser photometer at the opposite side of disk. During the disk is rotating, laser is irradiated and detected simultaneously. The laser photometer senses the transmitted laser power and generates voltage as output. The temperature of disk can be detected during the disk is rotating up to 3000 RPM.

Finite Element Modeling of a Piezoelectric Sensor Embedded in a Fluid-loaded Plate (유체와 접한 판재에 박힌 압전센서의 유한요소 모델링)

  • Kim, Jae-Hwan
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • The sensor response of a piezoelectric transducer embedded in a fluid loaded structure is modeled using a hybrid numerical approach. The structure is excited by an obliquely incident acoustic wave. Finite element modeling in the structure and fluid surrounding the transducer region, is used and a plane wave representation is exploited to match the displacement field at the mathematical boundary. On this boundary, continuity of field derivatives is enforced by using a penalty factor and to further achieve transparency at the mathematical boundary, drilling degrees of freedom (d.o.f.) are introduced to ensure continuity of all derivatives. Numerical results are presented for the sensor response and it is found that the sensor at that location is not only non-intrusive but also sensitive to the characteristic of the structure.

  • PDF

A Naming Application Model for Sensor Networks (센서 네트워크를 위한 네이밍 응용 모델)

  • Kim, Young-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3183-3192
    • /
    • 2009
  • The purpose of this paper is to introduce Naming application model for sensor networks. Currently, sensor networks comprised of sensor nodes have provided an application range which could not function before. However, unlike general network, current sensor networks are designed to cooperate with major wireless-capable sensor devices with limited resources. Thus, exporting/importing between individual sensor and current sensor networks is very inefficient and unstable. Attribute, schema and DIT(Directory Information Tree) must be designed for sensor network using SN LDAP application model in order to maintain transparency and provide constant service in a situation of data defect. With the system explained as above, Naming application model is made to manage SN Fuzzy Query. It shall be more efficient and stable structure as long as Naming application using a virtual equation in a certain environment with information collected from sensor node is provided. In this paper, I would like to introduce SN Fuzzy LDAP model for sensor network by quick Naming method. Also, naming application which is possible for fuzzy query in a certain environment based on the system will be proved.