• 제목/요약/키워드: Sensor System

검색결과 11,561건 처리시간 0.038초

Design of electronic tongue using IEEE 1451.2 (IEEE 1451.2를 이용한 전자혀 설계)

  • Kim, Dong-Jin;Kim, Jeong-Do;Jung, Woo-Suk;Lee, Jung-Hwan;Kim, Myung-Guy;Yoon, Chul-Oh
    • Journal of Sensor Science and Technology
    • /
    • 제16권2호
    • /
    • pp.150-158
    • /
    • 2007
  • The IEEE 1451 publication are available, this standard defines interface between sensor and processor, and plug and play in processor is possible. Also, Intelligence of sensor was possible because sensor includes transducer electronic data sheet (TEDS). In IEEE 1451 standards, IEEE 1451.4 is suitable standard in single sensor, and IEEE 1451.2 is suitable standard in multi-sensors (array sensor). In this paper, apply IEEE 1451 to electronic tongue system. In the case of electronic tongue system, because array sensor is used, it is that complex and difficult to apply IEEE 1451.4 that is standard for single sensor. In this paper, apply IEEE 1451.2 for array sensor to design of electronic tongue system. Communication interface method of IEEE 1451.2 for electronic tongue system is presented, and implemented TEDS of electronic tongue system.

Energy Harvesting System for Underground Facility Sensor (지하시설물용 센서 네트워크를 위한 에너지 획득 장치)

  • Kwon, Young-Min;Lee, Hyung-Su
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2009년도 정보통신설비 학술대회
    • /
    • pp.136-137
    • /
    • 2009
  • In this paper, we introduce UFSN(Underground Facility Sensor Network) in order to build the intelligent management system for the underground facility and drainage in convergence with ubiquitous technologies and propose the energy harvesting system for UFSN.

  • PDF

Tunnel Inspection and Monitoring System by Wireless Sensor Network (무선센서네트워크를 이용한 터널 모니터링 시스템)

  • Kim Hyung-Woo;Han Jin-Woo
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2006년도 하계학술대회
    • /
    • pp.91-94
    • /
    • 2006
  • In this paper, we deployed the tunnel inspection and monitoring system by wireless sensor network. It is shown that the wireless sensor network which is composed of sensor, wireless communication module, and gateway system can be applied to tunnel monitoring system. Sensors included herein are acceleration transducers, fire-alarm sensors, water-level sensors, and magnetic contact sensors. It is also found that the wireless sensor network can deliver sensing data reliably by ad-hoc networking technology. The gateway system that can send the sensing data to server by CDMA (code division multiple access) is developed. Finally, monitoring system is constructed by web service technology, and it is observed that this system can monitor the present state of tunnel without difficulties. Furthermore, the above system provides an alternative to inspect and monitor the tunnel efficiently where the conventional wired system cannot be applied.

  • PDF

Improvement of reliability of an ISFET pH-meter by employing multiple sensors

  • Chang, Kee-Seok;Cho, Byung-Woog;Kim, Chang-Soo;Choi, Sang-Bok;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • 제6권2호
    • /
    • pp.131-136
    • /
    • 1997
  • The ISFET(ion sensitive field effect transistor), a semiconductor ion sensor, has many advantages over conventional ion sensors. Various single-sensor type ISFET pH-meters have been developed. However, they could not be applied in fields because their performances are directly affected by the sensor condition. With only one sensor, the system could be easily damaged from environmental factors, and reliability of it is decreased. Therefore, a 4-channel PH-meter system is proposed to improve the reliability of ISFET pH-meter. It has 4 ISFETS as ion sensor, and a software which contains a new calibration and measurement algorithm appropriate to the system. The reliability of the system was proved by measuring hydrogen ion concentration in the pH standard solutions and buffer solutions.

  • PDF

Motor Imagery based Application Control using 2 Channel EEG Sensor (2채널 EEG센서를 활용한 운동 심상기반의 어플리케이션 컨트롤)

  • Lee, Hyeon-Seok;Jiang, Yubing;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • 제25권4호
    • /
    • pp.257-263
    • /
    • 2016
  • Among several technologies related to human brain, Brain Computer Interface (BCI) system is one of the most notable technologies recently. Conventional BCI for direct communication between human brain and machine are discomfort because normally electroencephalograghy(EEG) signal is measured by using multichannel EEG sensor. In this study, we propose 2-channel EEG sensor-based application control system which is more convenience and low complexity to wear to get EEG signal. EEG sensor module and system algorithm used in this study are developed and designed and one of the BCI methods, Motor Imagery (MI) is implemented in the system. Experiments are consisted of accuracy measurement of MI classification and driving control test. The results show that our simple wearable system has comparable performance with studies using multi-channel EEG sensor-based system, even better performance than other studies.

A Basic Study of Displacement Measurement of Magnetic Bearing System Using Hall Effect Sensor (자기베어링 시스템에서의 변위측정을 위한 홀 효과 센서의 기초 연구)

  • Yang, J.H.;Jeong, G.G.;Jeong, H.H.;Son, S.K.
    • Journal of Power System Engineering
    • /
    • 제11권2호
    • /
    • pp.72-76
    • /
    • 2007
  • Since the magnetic bearing system has unstability inherently it is necessary to measure the displacement for stable operation. Normally the displacement measurement is implemented by using sensors. The sensor for the displacement measurement is selected by precision, installation space, effect of magnetic field and response speed. And the cost of displacement measurement sensor also is considered. At the cost the hall effect sensor has a large advantage comparing with the others. Therefore this study concern about the basis experimental test for the displacement measurement of the magnetic bearing system that uses the hall effect sensor coupled with a tiny permanent magnet. The experimental results confirm the validity and practicability for this displacement measurement sensor.

  • PDF

Development of PSD Sensor Based Range Finder System Using Linearizing Function of Voltage-Distance Conversion

  • Kim, Yu-Chan;Ryoo, Young-Jae;Song, Jeong-Gon;Lee, Ju-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1427-1430
    • /
    • 2005
  • In this paper, the range finder system using a PSD sensor suitable for low-cost localization sensor of a mobile robot. Because the distance-voltage output of a PSD sensor has a non-linear property, the linearizing function is proposed through the experimental characteristics of the sensor. And the characteristics are tested and the distance-voltage data are measured in various colors and materials of object. For a known environment, a mobile robot scans the surroundings using a PSD sensor that can rotate $360^{\circ}$. Finally, the performance and accuracy of the developed system are verified according to the comparison the distance by proposed function with real distance

  • PDF

Development of a Monitoring System Based on the Cooperation of Image and Sensor Information (영상 정보와 센서 정보의 협업에 의한 모니터링시스템 개발)

  • Kwon, Cha-Uk;Cha, Kyung-Ae;Kim, Joo-Sung
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제5권2호
    • /
    • pp.46-56
    • /
    • 2010
  • This study proposes a monitoring system by cooperating the image information and the sensor information in a sensor network system. The monitoring system proposed in this study is divided into internal spaces, such as offices and laboratories, and external spaces including other various spaces. In the internal spaces, motions in objects are detected through cameras while some peripherals like lights are controlled by analyzing some temperature, humidity, and illuminance data detected by sensor nodes. In the external spaces, it is to watch certain intruders to the internal spaces through the interested region for exceptional time by installing cameras, motion detectors, and body detectors in such interested regions. In the results of the test that was applied to a practically limited environment by implementing some interfaces for the proposed system, it was considered that it is possible to watch surroundings effectively using the image information obtained from cameras and sensor information acquisited from sensor nodes.

LOCATION UNCERTAINTY IN ASSET TRACKING USING WIRELESS SENSOR NETWORKS

  • Jo, Jung-Hee;Kim, Kwang-Soo;Lee, Ki-Sung;Kim, Sun-Joong
    • Proceedings of the KSRS Conference
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.357-360
    • /
    • 2007
  • An asset tracking using wireless sensor network is concerned with geographical locations of sensor nodes. The limited size of sensor nodes makes them attractable for tracking service, at the same time their size causes power restrictions, limited computation power, and storage restrictions. Due to such constrained capabilities, the wireless sensor network basically assumes the failure of sensor nodes. This causes a set of concerns in designing asset tracking system on wireless sensor network and one of the most critical factors is location uncertainty of sensor nodes. In this paper, we classify the location uncertainty problem in asset tracking system into following cases. First, sensor node isn't read at all because of sensor node failure, leading to misunderstanding that asset is not present. Second, incorrect location is read due to interference of RSSI, providing unreliable location of asset. We implemented and installed our asset tracking system in a real environment and continuously monitored the status of asset and measured error rate of location of sensor nodes. We present experimental results that demonstrate the location uncertainty problem in asset tracking system using wireless sensor network.

  • PDF

Damage index sensor for smart structures

  • Mita, Akira;Takahira, Shinpei
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.331-346
    • /
    • 2004
  • A new sensor system is proposed for measuring damage indexes. The damage index is a physical value that is well correlated to a critical damage in a device or a structure. The mechanism proposed here utilizes elastic buckling of a thin wire and does not require any external power supply for memorizing the index. The mechanisms to detect peak strain, peak displacement, peak acceleration and cumulative deformation as examples of damage indexes are presented. Furthermore, passive and active wireless data retrieval mechanisms using electromagnetic induction are proposed. The passive wireless system is achieved by forming a closed LC circuit to oscillate at its natural frequency. The active wireless sensor can transmit the data much further than the passive system at the sacrifice of slightly complicated electric circuit for the sensor. For wireless data retrieval, no wire is needed for the sensor to supply electrical power. For the active system, electrical power is supplied to the sensor by radio waves emitted from the retrieval system. Thus, external power supply is only needed for the retrieval system when the retrieval becomes necessary. Theoretical and experimental studies to show excellent performance of the proposed sensor are presented. Finally, a prototype damage index sensor installed into a 7 storey base-isolated building is explained.