• 제목/요약/키워드: Sensor System

Search Result 11,637, Processing Time 0.04 seconds

A Implementation of User Exercise Motion Recognition System Using Smart-Phone (스마트폰을 이용한 사용자 운동 모션 인식 시스템 구현)

  • Kwon, Seung-Hyun;Choi, Yue-Soon;Lim, Soon-Ja;Joung, Suck-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.396-402
    • /
    • 2016
  • Recently, as the performance of smart phones has advanced and their distribution has increased, various functions in existing devices are accumulated. In particular, functions in smart devices have matured through improvement of diverse sensors. Various applications with the development of smart phones get fleshed out. As a result, services from applications promoting physical activity in users have gotten attention from the public. However, these services are about diet alone, and because these have no exercise motion recognition capability to detect movement in the correct position, the user has difficulty obtaining the benefits of exercise. In this paper, we develop exercise motion-recognition software that can sense the user's motion using a sensor built into a smart phone. In addition, we implement a system to offer exercise with friends who are connected via web server. The exercise motion recognition utilizes a Kalman filter algorithm to correct the user's motion data, and compared to data that exist in sampling, determines whether the user moves in the correct position by using a DTW algorithm.

Balancing Water Supply Reliability, Flood Hazard Mitigation and Environmental Resilience in Large River Systems

  • Goodwin, Peter
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.1-1
    • /
    • 2016
  • Many of the world's large ecosystems are severely stressed due to population growth, water quality and quantity problems, vulnerability to flood and drought, and the loss of native species and cultural resources. Consequences of climate change further increase uncertainties about the future. These major societal challenges must be addressed through innovations in governance, policy, and ways of implementing management strategies. Science and engineering play a critical role in helping define possible alternative futures that could be achieved and the possible consequences to economic development, quality of life, and sustainability of ecosystem services. Science has advanced rapidly during the past decade with the emergence of science communities coalescing around 'Grand Challenges' and the maturation of how these communities function has resulted in large interdisciplinary research networks. An example is the River Experiment Center of KICT that engages researchers from throughout Korea and the world. This trend has been complemented by major advances in sensor technologies and data synthesis to accelerate knowledge discovery. These factors combine to allow scientific debate to occur in a more open and transparent manner. The availability of information and improved communication of scientific and engineering issues is raising the level of dialogue at the science-policy interface. However, severe challenges persist since scientific discovery does not occur on the same timeframe as management actions, policy decisions or at the pace sometimes expected by elected officials. Common challenges include the need to make decisions in the face of considerable uncertainty, ensuring research results are actionable and preventing science being used by special interests to delay or obsfucate decisions. These challenges are explored in the context of examples from the United States, including the California Bay-Delta system. California transfers water from the wetter northern part of the state to the drier southern part of the state through the Central Valley Project since 1940 and this was supplemented by the State Water Project in 1973. The scale of these activities is remarkable: approximately two thirds of the population of Californians rely on water from the Delta, these waters also irrigate up to 45% of the fruits & vegetables produced in the US, and about 80% of California's commercial fishery species live in or migrate through the Bay-Delta. This Delta region is a global hotspot for biodiversity that provides habitat for over 700 species, but is also a hotspot for the loss of biodiversity with more than 25 species currently listed by the Endangered Species Act. Understanding the decline of the fragile ecosystem of the Bay-Delta system and the potential consequences to economic growth if water transfers are reduced for the environment, the California State Legislature passed landmark legislation in 2009 (CA Water Code SS 85054) that established "Coequal goals of providing a more reliable water supply for California and protecting, restoring, and enhancing the Delta ecosystem". The legislation also stated that "The coequal goals shall be achieved in a manner that protects and enhances the unique cultural, recreational, natural resource, and agricultural values of the Delta as an evolving place." The challenges of integrating policy, management and scientific research will be described through this and other international examples.

  • PDF

Study of the Incremental Dynamic Inversion Control to Prevent the Over-G in the Transonic Flight Region (천음속 비행영역에서 하중제한 초과 방지를 위한 증분형 동적 모델역변환 제어 연구)

  • Jin, Tae-beom;Kim, Chong-sup;Koh, Gi-Oak;Kim, Byoung-Soo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.33-42
    • /
    • 2021
  • Modern aircraft fighters improve the maneuverability and performance with the RSS (Relaxed Static Stability) concept and therefore these aircrafts are susceptible to abrupt pitch-up in the transonic and moderate Angle-of-Attack (AoA) flight region where the shock wave is formed and the mean aerodynamic center is moved forward during deceleration. Also, the modeling of the aircraft flying in this flight region is very difficult due to complex flow filed and unpredictable dynamic characteristics and the model-based control design technique does not fully cover this problem. In this paper, we analyzed the performance of the TPMC (Transonic Pitching Moment Compensation) control based on the model-based IDI (Incremental Dynamic Inversion) and the Hybrid IDI based on the model and sensor based IDI during the SDT (Slow Down Turn) in transonic region. As the result, the Hybrid IDI had quicker response and the same maximum g suppression performance and provided the predictable flying qualities compared to the TPMC control. The Hybrid IDI improved the performance of the Over-G protection controller in the transonic and moderate AoA region

Water Depth and Riverbed Surveying Using Airborne Bathymetric LiDAR System - A Case Study at the Gokgyo River (항공수심라이다를 활용한 하천 수심 및 하상 측량에 관한 연구 - 곡교천 사례를 중심으로)

  • Lee, Jae Bin;Kim, Hye Jin;Kim, Jae Hak;Wie, Gwang Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.235-243
    • /
    • 2021
  • River surveying is conducted to acquire basic geographic data for river master plans and various river maintenance, and it is also used to predict changes after river maintenance construction. ABL (Airborne Bathymetric LiDAR) system is a cutting-edge surveying technology that can simultaneously observe the water surface and river bed using a green laser, and has many advantages in river surveying. In order to use the ABL data for river surveying, it is prerequisite step to segment and extract the water surface and river bed points from the original point cloud data. In this study, point cloud segmentation was performed by applying the ground filtering technique, ATIN (Adaptive Triangular Irregular Network) to the ABL data and then, the water surface and riverbed point clouds were extracted sequentially. In the Gokgyocheon river area, Chungcheongnam-do, the experiment was conducted with the dataset obtained using the Leica Chiroptera 4X sensor. As a result of the study, the overall classification accuracy for the water surface and riverbed was 88.8%, and the Kappa coefficient was 0.825, confirming that the ABL data can be effectively used for river surveying.

3D Thermo-Spatial Modeling Using Drone Thermal Infrared Images (드론 열적외선 영상을 이용한 3차원 열공간 모델링)

  • Shin, Young Ha;Sohn, Kyung Wahn;Lim, SooBong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • Systematic and continuous monitoring and management of the energy consumption of buildings are important for estimating building energy efficiency, and ultimately aim to cope with climate change and establish effective policies for environment, and energy supply and demand policies. Globally, buildings consume 36% of total energy and account for 39% of carbon dioxide emissions. The purpose of this study is to generate three-dimensional thermo-spatial building models with photogrammetric technique using drone TIR (Thermal Infrared) images to measure the temperature emitted from a building, that is essential for the building energy rating system. The aerial triangulation was performed with both optical and TIR images taken from the sensor mounted on the drone, and the accuracy of the models was analyzed. In addition, the thermo-spatial models of temperature distribution of the buildings in three-dimension were visualized. Although shape of the objects 3D building modeling is relatively inaccurate as the spatial and radiometric resolution of the TIR images are lower than that of optical images, TIR imagery could be used effectively to measure the thermal energy of the buildings based on spatial information. This paper could be meaningful to present extension of photogrammetry to various application. The energy consumption could be quantitatively estimated using the temperature emitted from the individual buildings that eventually would be uses as essential information for building energy efficiency rating system.

Investigation of the body distribution of load pressure and virtual wear design according to the corset type harness (코르셋 타입 하네스의 신체 하중압력 분포 측정 및 가상착의 적용)

  • Kwon, MiYeon;Choi, Sola;Kim, Juhea
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • Harnesses are used in a variety of industries, such as rescue operations, medicine, and entertainment. However, conventional harnesses have problems as they are uncomfortable to wear and causes continuous pain. Therefore, in this study, the load and pressure applied to the body in the flying state when using a conventional harness were measured in real time and the distribution change was observed. Load and pressure were measured using a modified corset harness, a pressure sensor, and a human mannequin to measure the maximum and average pressure on the waist. As a result, it was confirmed that the load concentrated on the waist in the flying state was 104 N, and the pressure was applied to the left and right sides was 800 kPa or greater. The pressure distribution showed a pressure of 3-45 kPa in 73% in all measurable pressures. The results of the load and pressure distribution are presented as basic data for improving the wearability and reducing the discomfort of harnesses in the future, aid in the development of a harnesses that can minimize discomfort for various activities, and increase the concentration on experiential activities. In addition, using the CLO 3D program, which is a 3D virtual wearing system, a harness was put on a virtual model, and the compression level was checked and compared with the actual pressure distribution. As a result of comparing the measured pressure values in the flying state with the clothing pressure wearing the harness in the CLO 3D program, the total pressure value was found to be about 68% of the actual measured value. This helps develop a harness that can minimize discomfort during activities by predicting the load and pressure on the body by first applying new designs to a virtual wearing system during development. These new harness patterns can solve the problems of conventional harnesses.

Security issues and requirements for cloud-based u-Healthcare System (클라우드기반 u-헬스케어 시스템을 위한 보안 이슈 및 요구사항 분석)

  • Lee, Young Sil;Kim, TaeYong;Lee, HoonJae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.299-302
    • /
    • 2014
  • Due to the convergence between digital devices and the development of wireless communication technology, bit-signal sensor miniaturization, building an Electronic Medical Record (EMR) which is a digital version of a paper chart that contains all of a patient's medical history and the information of Electronic Health Record (EHR), Ubiquitous healthcare (u-Healthcare) that can monitor their health status and provide personal healthcare service anytime and anywhere. Also, the appearance of cloud computing technology is one of the factors that accelerate the development of u-healthcare service. However, if the individual information to be used maliciously during the u-healthcare service utilization, leads to serious problems directly related to the individual's life because if it goes beyond the level of simple health screening and treatment, it may not provide accurate and reliable healthcare services. For this reason, we analyzed a variety of security issues related to u-healthcare service in cloud computing environment and described about directions of secure health information sharing system construction. In addition, we suggest the future developmental direction for th activation of u-healthcare industry.

  • PDF

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets (화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장)

  • Kim, Jong-IL;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.81-86
    • /
    • 2019
  • Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.

Heart Rate Signal Extraction by Using Finger vein Recognition System (지정맥 인식 시스템을 이용한 심박신호 검출)

  • Bok, Jin Yeong;Suh, Kun Ha;Lee, Eui Chul
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.701-709
    • /
    • 2019
  • Recently, heart rate signal, which is one of biological signals, have been used in various fields related to healthcare. Conventionally, most of the proposed heart rate signal detection methods are contact type methods, but there is a problem of discomfort that the subject have to contact with the device. In order to solve the problem, detection study by non-contact method has been progressed recently. The detected heart rate signal can be used for finger vein liveness detection and various application using heart rate. In this paper, we propose a method to obtain heart rate signal by using finger vein imaging system. The proposed method detected the signal from the changes of the brightness value in the time domain of the infrared finger vein images and converted it into the frequency domain using the image processing algorithm. After the conversion, we removed the noise not related to the heart rate signal through band-pass filtering. In order to evaluate the accuracy of the signal, we analyzed the correlation with the signal obtained simultaneously with the finger vein acquisition device and contact type PPG sensor approved by KFDA. As a result, it was possible to confirm that the heart rate signal detected in non-contact method through the finger vein image coincides with the waveform of actual heart rate signal.

Classification of behavioral signs of the mares for prediction of the pre-foaling period

  • Jung, Youngwook;Jung, Heejun;Jang, Yongseok;Yoon, Duhak;Yoon, Minjung
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.2
    • /
    • pp.99-105
    • /
    • 2021
  • In horse management, the alarm system with sensors in the foaling period enables the breeder can appropriately prepare the time of the parturition. It is important to prevent losses by unpredictable parturition because there are several high risks such as dystocia and the death of foals and mares during foaling. However, unlike analysis in the alarm system that detects specific motions has been widely performed, analysis of classification following specific behavior patterns or number needs to be more organized. Thus, the objective of this study is to classify signs of the specific behaviors of the mares for the prediction of pre-foaling behaviors. Five Thoroughbred mares (9-20 yrs) were randomly selected for observation of the pre-foaling behaviors. The behaviors were monitored for 90 min that was divided into three different periods as 1) from -90 to -60 min, 2) from -60 to -30 min, 3) from -30 min to the time for the discharge of the amniotic fluid, respectively. The behaviors were divided into two different categories as state and frequent behaviors and each specific behavioral pattern for classification was individually described. In the state behaviors, the number of mares in the standing of the foaling group (3.17 ± 0.18b) at period 3 was significantly higher than the control group (1.67 ± 0.46a). In contrast, the number of the mares in the eating of the foaling group (1.17 ± 0.34b) at period 3 was significantly lower than the control group (3.33 ± 0.46a). In the frequent behaviors, the weaving of the foaling group was significantly higher than the control group, and looking at the belly of the foaling group was significantly lower than the control group. In period 2, defecation, weaving, and lowering the head of the foaling group were significantly higher than the control group, respectively. In period 3, sitting down and standing up, pawing, weaving, and lowering the head in the foaling group were also significantly higher than the control group. In conclusion, the behavior is significantly different in foaling periods, and the prediction of foaling may be feasible by the detection of the pre-foaling behaviors in the mares.