• 제목/요약/키워드: Sensor Sensitivity

검색결과 1,910건 처리시간 0.031초

CMOS Microcontroller IC와 고밀도 원형모양SOI 마이크로센서의 단일집적 (A Monolithic Integration with A High Density Circular-Shape SOI Microsensor and CMOS Microcontroller IC)

  • 이명옥;문양호
    • 전기전자학회논문지
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 1997
  • It is well-known that rectangular bulk-Si sensors prepared by etch or epi etch-stop micromachining technology are already in practical use today, but the conventional bulk-Si sensor shows some drawbacks such as large chip size and limited applications as silicon sensor device is to be miniaturized. We consider a circular-shape SOI(Silicon-On-Insulator) micro-cavity technology to facilitate multiple sensors on very small chip, to make device easier to package than conventional sensor like pressure sensor and to provide very high over-pressure capability. This paper demonstrates the cross-functional results for stress analyses(targeting $5{\mu}m$ deflection and 100MPa stress as maximum at various applicable pressure ranges), for finding permissible diaphragm dimension by output sensitivity, and piezoresistive sensor theory from two-type SOI structures where the double SOI structure shows the most feasible deflection and small stress at various ambient pressures. Those results can be compared with the ones of circular-shape bulk-Si based sensor$^{[17]}. The SOI micro-cavity formed the sensors is promising to integrate with calibration, gain stage and controller unit plus high current/high voltage CMOS drivers onto monolithic chip.

  • PDF

악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발 (Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive)

  • 정완영;심창현
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

나일론 시트와 염료를 이용한 고감도 색변환 포름알데히드 가스 센서 (Highly Sensitive Colorimetric Formaldehyde Gas Sensors using Nylon Sheet and Dye)

  • 정승화;조영범;김용신
    • 센서학회지
    • /
    • 제26권6호
    • /
    • pp.420-426
    • /
    • 2017
  • A colorimetric sensor was investigated to achieve a low-cost warning device for harmful gaseous formaldehyde (HCHO). The sensor is based on selective reactions between hydroxylamine sulfate and HCHO, leading to the production of sulfuric acid. The produced acid results in color-changing response through the acid-base reaction with dye molecules impregnated on a solid membrane substrate. For attaining this purpose, sensors were fabricated by drop-casting a dye solution prepared using different pH indicators on various commercially available polymer sheets, and their colorimetric responses were evaluated in terms of sensitivity and reliability. The colorimetric sensor using bromophenol blue (BPB) and nylon sheet was found to exhibit the best performance in HCHO detection. An initial bluish green of a sensor was changed to yellow when exposed to gaseous formaldehyde. The color change was recorded using an office scanner and further analyzed in term of RGB distance for quantifying sensor's response at different HCHO(g) concentrations. It exhibited a recognizable colorimetric response even at 50 ppb, being lower than WHO's standard of 80 ppb. In addition, the sensor was found to have quite good selectivity in HCHO detection under the presence of common volatile organic compounds such as ethanol, toluene, and hexane.

가스센서를 이용한 부분방전특성에 따른 유중수소가스 측정연구 (Measurement Technology of the Dissolved Hydrogen Gas Due to Partial Discharge in Oil using Gas Sensor)

  • 허종철;선종호;강동식;정주영;추영배;박정후
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1784-1789
    • /
    • 2009
  • This paper describes the measurement technology of the dissolved hydrogen gas due to partial discharge in oil using gas sensor. For higher resolution and less error in measurement of the dissolved hydrogen gas in oil, the sensor outputs with ambient temperature which affect the sensor output characteristics should be considered. The sensor output trends with ambient temperature and the properties of the dissolved hydrogen gas in oil with partial discharge characteristic were analyzed through the test results. It was indicated that the sensor peak and the base voltage with measuring time were affected by ambient temperature and the measurement errors of the sensor output by temperature were reduced by using the difference between the peak and the base voltage rather than just the peak voltage. In addition, the hydrogen gas sensor outputs were increased with the increase of partial discharge energy.

Implementation of automatic detection system of IoT based sensor device (Considering the application service of reduction of consumption current)

  • Kwon, Myung-Kyu
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권9호
    • /
    • pp.113-122
    • /
    • 2018
  • In this paper, IoT(Internet of things) technology, which is the core of the 4th industrial revolution, was applied to the study of reduction of consumption current. The IoT is a sensor that collects data, a sensor communication, a gateway that processes and stores the collected data. Data application of IoT technology is applied to smart home, smart city, healthcare, smart factory, etc. and it needs to be applied to various industrial fields. By sensing the location of the sensor device, the specific functions of the gateway and the platform are turned ON and OFF to reduce the consumption current of the equipment during the OFF period. When the sensor device accesses the gateway, the specific function of the gateway is turned ON and When the device is separated from the gateway, it senses the sensitivity of the wireless signal and automatically turns off the certain functions. As a resurt, it has reduced the consumption of current. In this paper, we propose a novel system for detecting the location of sensor devices by applying IoT technology. The system implementation is realized by software based, and defines the requirements for the implementation of the sensor device gateway. The gateway automatically detects the location, movement of the device and performs necessary functions. Finally verifies the automatic detection performance of the gateway according to the location of the device. It will contribute greatly to the development of the smart city and office.

화이버 가스 센서 제작 및 NOx 가스 검출 특성 분석 (Fabrication of Fiber Gas Sensor and Analysis of NOx Gas Detection Characteristics)

  • 손주형;김현수;윤영기;장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제32권5호
    • /
    • pp.432-436
    • /
    • 2019
  • In this study, we produced a light, flexible, wearable gas sensor by depositing MWCNTs (Multi-walled Carbon Nanotubes) into nylon. MWCNTs are widely used as a gas sensor material due to their excellent mechanical, electrical and physical characteristics. We produced a gas sensor to detect NOx gases by depositing nylon yarn in a MWCNT solution. The MWCNT solution was made by mixing 3 mg MWCNT in 5 ml of ethanol. Nylon yarn was placed in the manufactured solution and ultrasonic waves were applied using an ultrasonicator for 3 h, resulting in MCWNT deposition. The MWCNT-deposited nylon yarn was dried at room temperature for 24 h. The MWCNT-thin-film-coated nylon yarn was masked 1 mm apart, and gold was then deposited on the masked nylon yarn to create the gas sensor. The sensor then was installed in a chamber with a controlled atmospheric environment and exposed to NOx gas. The changing signal from the sensor was amplified to analyze its gas detection characteristics.

윤활유 물성 측정을 위한 유전상수 센서 개발 (Development of Dielectric Constant Sensor for Measurementof Lubricant Properties)

  • 홍성호;강문식
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.203-207
    • /
    • 2021
  • This study presents the development of dielectric constant sensors to measure lubricant properties. The lubricant oil sensor is used to measure oil properties and machine conditions. Various condition monitoring methods are applied to diagnose machine conditions. Machine condition monitoring using oil sensors has advantage over other machine condition monitoring methods. The fault conditions can be noticed at the early stages by the detection of wear particles using oil sensors. Therefore, it provides an early warning in the failure procedure. A variety of oil sensors are applied to check the machine condition. Among all oil sensors, only one sensor can measure the tendency of several properties such as acidity and water content. A dielectric constant sensor is also used to measure various oil properties; therefore, it is very useful. The dielectric constant is the ratio of the capacitance of a capacitor using that material as a dielectric to that of a similar capacitor using vacuum as its dielectric. The dielectric constant has an effect on water content, contaminants, base oil, additive, and so forth. In this study, the dielectric constant sensor is fabricated using MEMS process. In the fabrication process, the shape, gap of the electrode array, and thickness of the insulation material are considered to improve the sensitivity of the sensor.

DNA 템플릿을 활용한 전이금속 칼코겐화합물 트랜지스터 기반 바이오센서 연구

  • 오애리;강동호;박진홍
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.213.1-213.1
    • /
    • 2015
  • Field effect transistors (FETs)를 기반으로 한 바이오센서는 빠른 응답속도, 저비용, label-free 등을 이유로 각광받고 있다. 그러나 3D 구조를 기반으로 한 FETs 바이오센서의 낮은 sensitivity의 한계점을 지니며, 이를 극복하기 위해 1D 구조의 나노튜브 등을 활용하였으나 여전히 높은 sensitivity의 확보는 힘들다. 최근에는 이러한 문제점을 극복하기 위해 이차원 반도체 물질 중 하나인 Transition metal dichalcogenide (TMD)를 이용하여, 700 이상의 sensitivity를 지니는 pH센서 및 100 이상의 sensitivity를 지니는 바이오센서가 보고되었다. 하지만 이보다 더 높은 정확성 및 반응성을 높이기 위한 연구는 부족한 실정이다. 우리는 DNA 템플릿을 이용하여, TMD FET 기반 pH 및 바이오센서의 반응성을 극대화시키는 연구를 선보인다. DNA는 7~8정도의 유전상수 (K)를 가지는 물질로 기존 $SiO_2$(K=3.9)보다 높은 유전상수를 가지며 두께를 0.7 nm로 매우 얇게 형성할 수 있는 장점이 있다. 이는 FET 기반 바이오센서의 표면 캐패시턴스를 높여 sensitivity를 극대화할 수 있으며, 기존에 사용된 high-k 기반 바이오센서와 비교하여도 약 10배 이상의 sensitivity 향상을 노릴 수 있다. 또한, TMD 물질로 우리는 $WSe_2$를 선택하였으며, pH 용액의 receptor로써 우리는 3-Aminopropyltriethoxysilane (APTES)를 활용하였고, 템플릿으로 사용된 DNA는 DX tile 및 Ring type의 두 가지를 사용하였다. 추가로, DNA의 phosphate backbone을 중성화시키고 DNA의 base pairing의 charge 안정화를 위해 구리 이온($Cu^{2+}$) 및 란타넘족($Tb^{3+}$)을 추가하였다. 완성된 바이오센서의 pH 센싱을 위해 우리는 pH 6,7,8의 표준 용액을 사용하였으며, 재현성 및 반복성의 확인하였다.

  • PDF

MEMS 구조 압전 마이크로폰의 최적구조 설계 (Optimal Design of a MEMS-type Piezoelectric Microphone)

  • 권민형;라용호;전대우;이영진
    • 센서학회지
    • /
    • 제27권4호
    • /
    • pp.269-274
    • /
    • 2018
  • High-sensitivity signal-to-noise ratio (SNR) microphones are essentially required for a broad range of automatic speech recognition applications. Piezoelectric microphones have several advantages compared to conventional capacitor microphones including high stiffness and high SNR. In this study, we designed a new piezoelectric membrane structure by using the finite elements method (FEM) and an optimization technique to improve the sensitivity of the transducer, which has a high-quality AlN piezoelectric thin film. The simulation demonstrated that the sensitivity critically depends on the inner radius of the top electrode, the outer radius of the membrane, and the thickness of the piezoelectric film in the microphone. The optimized piezoelectric transducer structure showed a much higher sensitivity than that of the conventional piezoelectric transducer structure. This study provides a visible path to realize micro-scale high-sensitivity piezoelectric microphones that have a simple manufacturing process, wide range of frequency and low DC bias voltage.

후막형 알코올 센서의 제조 및 특성 (Fabrication and Characteristics of Thick Film Alcohol Gas Sensors)

  • 최동한
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.387-390
    • /
    • 2004
  • Thick film alcohol gas sensors were fabricated. Their electrical properties and gas sensing characteristics were investigated. The sensitivity of $1wt.\%$ Pd-doped ${\gamma}-Fe_2O_3$ thick film heat treated at $400^{\circ}C$, 2hrs was $74\%$ to 500ppm alcohol gas at the operating temperature of $250^{\circ}C$. The selectivity of the film to alcohol was good. It showed fast response time to low concentrations of alcohol in air, hence this sensor can be used as a breath sensor.

  • PDF