• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,900, Processing Time 0.027 seconds

High-sensitivity Nitrogen Dioxide Gas Sensor Based on P3HT-doped Lead Sulfide Quantum Dots (P3HT가 도핑된 황화납 양자점 기반의 고감도 이산화질소 가스 센서)

  • JinBeom Kwon;YunTae Ha;SuJi Choe;Soobeen Baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.169-173
    • /
    • 2023
  • With the increasing concern of global warming caused by greenhouse gases owing to the recent industrial development, there is a growing need for advanced technology to control these emissions. Among the various greenhouse gases, nitrogen dioxide (NO2) is a major contributor to global warming and is mainly released from sources, such as automobile exhaust and factories. Although semiconductor-type NO2 gas sensors, such as SnO2, have been extensively studied, they often require high operating temperatures and complicated manufacturing processes, while lacking selectivity, resulting in inaccurate measurements of NO2 gas levels. To address these limitations, a novel sensor using PbS quantum dots (QDs) was developed, which operates at low temperatures and exhibits high selectivity toward NO2 gas owing to its strong oxidation reaction. Furthermore, the use of P3HT conductive polymer improved the thin film quality, reactivity, and reaction rate of the sensor. The sensor demonstrated the ability to accurately measure NO2 gas concentrations ranging from 500 to 100 ppm, with a 5.1 times higher sensitivity, 1.5 times higher response rate, and 1.15 times higher recovery rate compared with sensors without P3HT.

Application of Decision Tree to Classify Fall Risk Using Inertial Measurement Unit Sensor Data and Clinical Measurements

  • Junwoo Park;Jongwon Choi;Seyoung Lee;Kitaek Lim;Woochol Joseph Choi
    • Physical Therapy Korea
    • /
    • v.30 no.2
    • /
    • pp.102-109
    • /
    • 2023
  • Background: While efforts have been made to differentiate fall risk in older adults using wearable devices and clinical methodologies, technologies are still infancy. We applied a decision tree (DT) algorithm using inertial measurement unit (IMU) sensor data and clinical measurements to generate high performance classification models of fall risk of older adults. Objects: This study aims to develop a classification model of fall risk using IMU data and clinical measurements in older adults. Methods: Twenty-six older adults were assessed and categorized into high and low fall risk groups. IMU sensor data were obtained while walking from each group, and features were extracted to be used for a DT algorithm with the Gini index (DT1) and the Entropy index (DT2), which generated classification models to differentiate high and low fall risk groups. Model's performance was compared and presented with accuracy, sensitivity, and specificity. Results: Accuracy, sensitivity and specificity were 77.8%, 80.0%, and 66.7%, respectively, for DT1; and 72.2%, 91.7%, and 33.3%, respectively, for DT2. Conclusion: Our results suggest that the fall risk classification using IMU sensor data obtained during gait has potentials to be developed for practical use. Different machine learning techniques involving larger data set should be warranted for future research and development.

Ultrasensitive Crack-based Mechanosensor Inspired by Spider's Sensory Organ (거미의 감각기관을 모사한 초민감 균열기반 진동압력센서)

  • Suyoun Oh;Tae-il Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Spiders detect even tiny vibrations through their vibrational sensory organs. Leveraging their exceptional vibration sensing abilities, they can detect vibrations caused by prey or predators to plan attacks or perceive threats, utilizing them for survival. This paper introduces a nanoscale crack-based sensor mimicking the spider's sensory organ. Inspired by the slit sensory organ used by spiders to detect vibrations, the sensor with the cracks detects vibrations and pressure with high sensitivity. By controlling the depth of these cracks, they developed a sensor capable of detecting external mechanical signals with remarkable sensitivity. This sensor achieves a gauge factor of 16,000 at 2% strain with an applied tensile stress of 10 N. With high signal-to-noise ratio, it accurately recognizes desired vibrations, as confirmed through various evaluations of external force and biological signals (speech pattern, heart rate, etc.). This underscores the potential of utilizing biomimetic technology for the development of new sensors and their application across diverse industrial fields.

Detection Characteristics for the Ultra Lean NOx Gas Concentration Using the MWCNT Gas Sensor Structured with MOS-FET (MOS-FET 구조의 MWCNT 가스센서를 이용한 초희박 NOx 가스 검출 특성)

  • Kim, Hyun-Soo;Lee, Seung-Hun;Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.707-711
    • /
    • 2013
  • Carbon nanotubes(CNT) has strength and chemical stability, greatly conductivity characteristics. In particular, MWCNT (multi-walled carbon nanotubes) show rapidly resistance sensitive for changes in the ambient gas, and therefore they are ideal materials to gas sensor. So, we fabricated NOx gas sensors structured MOS-FET using MWCNT (multi-walled carbon nanotubes) material. We investigate the change resistance of NOx gas sensors based on MOS-FET with ultra lean NOx gas concentrations absorption. And NOx gas sensors show sensitivity on the change of gate-source voltage ($V_{gs}=0[V]$ or $V_{gs}=3.5[V]$). The gas sensors show the increase of sensitivity with increasing the temperature (largest value at $40^{\circ}C$). On the other hand, the sensitivity of sensors decreased with increasing of NOx gas concentration. In addition, We obtained the adsorption energy($U_a$), $U_a$ = 0.06714[eV] at the NOx gas concentration of 8[ppm], $U_a$ = 0.06769[eV] at 16[ppm], $U_a$ = 0.06847[eV] at 24[ppm] and $U_a$ = 0.06842[eV] at 32[ppm], of NOx gas molecules concentration on the MWCNT gas sensors surface with using the Arrhenius plots. As a result, the saturation phenomena is occurred by NOx gas injection of concentration for 32[ppm].

$NO_2$ gas sensing properties of $SnO_2$ thin films dopped with Pd and CNT (Pd 및 CNT 첨가에 따른 $SnO_2$ 박막의 이산화질소 감지특성)

  • Kim, H.K.;Lee, R.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.4
    • /
    • pp.101-106
    • /
    • 2008
  • The $SnO_2$ thin films doped with Pd and CNT as $NO_2$ gas sensor were prepared by spin coating and then the $NO_2$ gas response of these films were evaluated under $1ppm{\sim}5ppm\;NO_2$ concentration and operating temperature of $200^{\circ}C$. It was found that the sensor resistance was increased with $NO_2$ exposure and $NO_2$ concentration. The 3wt% Pd doped sample showed a sensitivity of 26.5 which was 10 times higher than that of pure $SnO_2$. And also the sensitivity of CNT doped sample increased with CNT content and it had 72 when 0.225 wt% of CNT was added under 5ppm $NO_2$ concentration.

  • PDF

Enhanced Detection Sensitivity of Surface Plasmon Resonance Biosensing Based on Colocalized Target Molecules and Evanescent Fields (생체분자와 필드의 동시국소화를 통한 플라스몬 센서의 감도향상 연구)

  • Lee, Won-Ju;Oh, Young-Jin;Kim, Dong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.4
    • /
    • pp.198-203
    • /
    • 2011
  • We have conducted a theoretical study to improve the detection limit of a surface plasmon resonance (SPR) sensor by co-localizing plasmonic fields and target molecules of interest. The fields were localized by nanograting antennas, while target molecules that participate in a molecular interaction were assumed to be co-localized by angled evaporation of a dielectric mask layer on the nanograting antennas. We have performed the evaluation using an overlap integral between distributions of plasmon fields and molecules and confirmed the correlation of the overlap with the sensitivity of an SPR sensor. Based on the calculated sensor characteristics, it was found that the sensitivity, if the fields and molecules are co-localized, can be as much as ten times that of non-colocalized structure.

The effect of initial Pd catalyst oxidation stale on CH$_4$sensitivity of SnO$_2$thin film sensor (Pd 촉매의 부분 산화 조절을 이용한 SnO$_2$박막 센서의 CH$_4$감도 변화 연구)

  • Choi, W. K.;Cho, J.;Cho, J. S.;Song, J. H.;Jung, H. J.;Koh, S. K.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.6 no.2
    • /
    • pp.45-49
    • /
    • 1999
  • A flammable gas sensor based on the $SnO_2$thin film deposited by the reactive ion assisted deposition was fabricated and ultra-thin Pd layer as catalyst was adsorbed at surface by ion beam sputtering. The initial oxidation states of Pd catalyst were controlled to investigate the role of Pd in the sensing process of inflammale gas sensor through annealing in air and vacuum respectively. The Pd catalyst existing in pure metallic state showed the sensitivity higher than that of PdO. The result might be closely related to the fact that PdO as a surface acceptor would receive electrons via Pd sub-channel from $SnO_2$, and thus which reduces the sensitivity and delay the response time.

  • PDF

A Study on the Improvement of Sensing Ability of ZnO Varistor-type Gas Sensors (ZnO 바리스터형 가스 센서의 감도 향상에 관한 연구)

  • 한세원;조한구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.271-274
    • /
    • 2000
  • Gas sensor materials capable of detecting hydrogen gases (H$_2$) or nitrogen oxides (NO$\_$x/, primarily NO and NO$_2$) with high sensitivity have attracted much interest in conjunction with the growing concern to the protection of global environments. Beside conventional sensor materials, such as semiconductors., conducting polymers and solid electrolytes, the potential of sensor materials with a new method for detecting hydrogen gases or nitrogen oxides gas has also been tested. The breakdown voltage of porous varistors shifted to a low electric field upon exposure to H$_2$ gas, whereas it shifted to a reverse direction in an atmosphere containing oxidizing gases such as O$_3$ and NO$_2$ in the temperature range of 300 to 600$^{\circ}C$. Furthermore, it was found that the magnitude of the breakdown voltage shift, i. e. the magnitude of sensitivity, was well correlated with gas concentration, and that the H$_2$ sensitivity was improved by controlling the composition of the Bi$_2$O$_3$ rich grain boundary phase. However, NO$\_$x/ sensing properties of porous varistors have not been studies in detail. The objective of the present study is to investigate the effect of the composition of the Bi$_2$O$_3$ rich grain boundary phase and other additive such as A1$_2$O$_3$ on the hydrogen gases (H$_2$) sensing properties of porous ZnO based varistors.

  • PDF

Stabilized Bragg grating sensor system for multiplexing vibration sensors of smart structures (스마트 구조물의 동시다점 진동 취득용 안정화된 광섬유 브래그 격자 센서 시스템의 개발)

  • Bang, Hyung-Joon;Kim, Dae-Hyun;Hong, Chang-Sun;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.50-57
    • /
    • 2004
  • For the application of structural health monitoring such as AE detection, a stabilized FBG sensor system with wide dynamic range was proposed. A tunable Fabry-Perot filter with narrow free spectral range(FSR) was used to simplify the multiplexing demodulator for FBG vibration sensors. Stabilization controlling system was also developed for the maintenance of maximum sensitivity of the sensors. In order to verify the performance of the proposed FBG vibration sensor system, we measured sensitivity, and the system showed the average sensitivity of 256 $n{\in}_{mas}/{\sqrt{Hz}}$. Finally, multi-points vibration tests using in-line FBG sensors were conducted to validate the multiplexing performance of the FBG system.

Design and Performance Evaluation on 2×2 Balanced-Bridge Mach-Zehnder Interferometric Integrated-Optical Biochemical Sensors using SOI Slot Optical Waveguides (SOI 슬롯 광 도파로를 활용한 2×2 Balanced-Bridge Mach-Zehnder 간섭형 집적광학 바이오케미컬 센서 설계 및 성능평가)

  • Hongsik Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.223-231
    • /
    • 2023
  • An integrated-optical biochemical sensor structure that can perform homogeneous and surface sensing using a 2×2 balanced-bridge Mach-Zehnder interference structure based on the optimized SOI slot optical waveguide was described, and its performance and characteristics were evaluated. Equations for the two output optical powers were derived and examined using the transfer matrices of a 3-dB coupler and phase shifter (channel waveguide). The length of the 3-dB coupler was determined such that the two output optical powers were same using these formulas. In homogeneous sensing, the effect of the refractive index of an analyte in the range of 1.33-1.36 on the two output optical power distributions was numerically derived, and the sensitivity was calculated based on each output and the difference between the two outputs, the former and the latter being 7.5796-19.0305 [au/RIU] and 15.2601-38.1351 [au/RIU], respectively. In the case of surface sensing, the sensitivity range of the refractive index of 1.337 based on each of the two outputs was calculated as -2.2490--3.5854 [au/RIU] and 1.2194-3.8012 [au/RIU], and the sensitivity range of 4.8048-7.0694 [au/RIU] was confirmed based on the difference between the two outputs.