• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,899, Processing Time 0.029 seconds

Sub-ppm level MEMS gas sensor (서브 피피엠 레벨 미세기전 가스 센서)

  • Ko, Sang-Choon;Jun, Chi-Hoon;Song, Hyun-Woo;Park, Seon-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • A sub-ppm level MEMS gas sensor that can be used for the detection of formaldehyde (HCHO) is presented. It is realized by using a zinc oxide (ZnO) thin-film material with a Ni-seed layer as a sensing material and by bulk micromachining technology. To enhance sensitivity of the MEMS gas sensor with Ni-seed layer was embedded with ZnO sensing material and sensing electrodes. As experimental results, the changed sensor resistance ratio for HCHO gas was 9.65 % for 10 ppb, 18.06 % for 100 ppb, and 35.7 % for 1 ppm, respectively. In addition, the minimum detection level of the fabricated MEMS gas sensor was 10 ppb for the HCHO gas. And the measured output voltage was about 0.94 V for 10 ppb HCHO gas concentration. The noise level of the fabricated MEMS gas sensor was about 50 mV. The response and recovery times were 3 and 5 min, respectively. The consumption power of the Pt micro-heater under sensor testing was 184 mW and its operating temperature was $400^{\circ}C$.

Conceptual design and preliminary characterization of serial array system of high-resolution MEMS accelerometers with embedded optical detection

  • Perez, Maximilian;Shkel, Andrei
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.63-82
    • /
    • 2005
  • This paper introduces a technology for robust and low maintenance cost sensor network capable to detect accelerations below a micro-g in a wide frequency bandwidth (above 1,000 Hz). Sensor networks with such performance are critical for navigation, seismology, acoustic sensing, and for the health monitoring of civil structures. The approach is based on the fabrication of an array of high sensitivity accelerometers, each utilizing Fabry-Perot cavity with wavelength-dependent reflectivity to allow embedded optical detection and serialization. The unique feature of the approach is that no local power source is required for each individual sensor. Instead one global light source is used, providing an input optical signal which propagates through an optical fiber network from sensor-to-sensor. The information from each sensor is embedded onto the transmitted light as an intrinsic wavelength division multiplexed signal. This optical "rainbow" of data is then assessed providing real-time sensing information from each sensor node in the network. This paper introduces the Fabry-Perot based accelerometer and examines its critical features, including the effects of imperfections and resolution estimates. It then presents serialization techniques for the creation of systems of arrayed sensors and examines the effects of serialization on sensor response. Finally, a fabrication process is proposed to create test structures for the critical components of the device, which are dynamically characterized.

Fabrication and Characteristics of Micro-Electro-Mechanical-System-Based Gas Flow Sensor

  • Choi, Ju-Chan;Lee, June-Kyoo;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.363-367
    • /
    • 2011
  • This paper proposes a highly-sensitive gas flow sensor with a simple structure. The sensor is composed of a micro-heater for heating the gas medium and a pair of temperature sensors for detecting temperature differences due to gas flow in a sealed chamber on one axis. Operation of the gas flow sensor depends on the transfer of heat through the air medium. The proposed gas flow sensor has the capability to measure gas flow rates <5 $cm^3$/min with a resolution of approximately 0.01 $cm^3$/min. Furthermore, this paper reports some additional experiment results, including the sensitivity of the proposed gas flow sensor as a function of operating current and the flow of different types of gas(oxygen, carbon dioxide, and nitrogen). The fabrication process of the proposed sensor is very simple, making it a good candidate for mass production.

A Single Lens Micro-Angle Sensor

  • Saito, Yusuke;Gao, Wei;Kiyono, Satoshi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.14-19
    • /
    • 2007
  • Angle sensors based on the principle of autocollimation, which are usually called autocollimators, can accurately measure small tilt angles of a light-reflecting flat surface. This paper describes a prototype micro-angle sensor that is based on the laser autocollimation technique. The new angle sensor is compact and consists of a laser diode as the light source and a quadrant photodiode as a position-sensing device. Because of its concise design, the microangle sensor facilitates dynamic measurements of the angular error motions of a precision stage without influencing the original dynamic properties of the stage. This is because the sensor only requires a small extra target mirror to be mounted on the stage. The sensitivity of the angle detection is independent of the focal length of the objective lens; therefore, an objective lens with a relatively short focal length is employed to reduce the size of the device. The micro-angle sensor uses a single lens for the both the laser collimation and focusing, which distinguishes it from the conventional laser autocollimation method that has separate collimate and objective lenses. The new micro-angle sensor has dimensions of $15.1\times22.0\times14.0mm$ and its resolution is better than 0.1 arc-second The optical design and performance of this micro-angle sensor were verified by experimental results.

Temperature sensor without reference resistor by indium tin oxide and molybdenum (인듐틴옥사이드와 몰리브데늄을 이용한 외부 기준 저항이 필요 없는 온도센서)

  • Jeon, Ho-Sik;Bae, Byung-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.483-489
    • /
    • 2010
  • Display quality depends on panel temperatures. To compensate it, temperature sensor was integrated on the panel. The conventional temperature sensor integrated on the panel needs external reference resistor. Since the resistance of external resistor can vary according to the variation of the environment temperature, the conventional temperature sensor can make error in temperature sensing. The environmental temperatures can change by the back light unit, driving circuits or chips. In this paper, we proposed a integrated temperature sensor on display panel which does not need external reference resister. Instead of external reference resistor, we used two materials which have different temperature coefficient in resistivity. They are connected serially and the output voltage was measured at the point of connection with the applied voltage to both ends. The proposed sensor was fabricated with indium tin oxide(ITO), and Mo metal electrode temperature sensor which were connected serially. We verified the temperature senor by the measurements of sensitivity, lineality, hysteresis, repeatability, stability, and accuracy.

Study of Magnetic Sensor Harmonic Reduction to Improve Direct Driven Motors Performance Applied to Platform Screen Doors (스크린도어용 다이렉트 드라이브 모터 성능개선을 위한 자기식 센서의 고조파 저감 연구)

  • Kim, Yun-Soo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1645-1650
    • /
    • 2015
  • This paper presents the 3-dimensional electromagnetic field analysis method and correction of sensor distortion that is used by a motor speed sensor. The magnetic sensors are being expanded due to lower price than the other speed sensors such as resolver and encoder. Magnetic sensor generates sine and cosine waves when the motor rotates. However, the sine and cosine signals are distorted due to magnetic noise, which makes the angle error of the sensor, generated near by the Hall element. This paper defines an optimal design variables by using the Taguchi method to minimize output distortion of the magnetic sensor and permanent magnet. To enhance reliability of the magnetic position sensor from sensitivity error, assembly amplitude mismatch and the electrical angle, 3-Dimensional electromagnetic finite element method and correction algorithm errors were performed in due of the magnetic sensor in order to improve the quality of the initial production model.

Planar Hall Sensor Used for Microbead Detection and Biochip Application

  • Thanh, N.T.;Kim, D.Y.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.40-44
    • /
    • 2007
  • The Planar Hall effect in a spin valve structure has been applied as a biosensor being capable of detecting $Dynabeads^{(R)}$ M-280. The sensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor with the pattern size of $50{\times}100{\mu}m^2$ has produced high sensitivity; especially, the real-time profiles by using that sensor revealed significant performance at external applied magnetic field of around 7.0 Oe with the resolution of 0.04 beads per $\mu m^2$. Finally, a successful array including 24 patterns with the single sensor size of $3{\times}3{\mu}m^2$ has shown the uniform and stable signals for single magnetic bead detection. The comparison of this sensor signal with the others has proved feasibility for biosensor application. This, connecting with the advantages of more stable and high signal to noise of PHR sensor's behaviors, can be used to detect the biomolecules and provide a vehicle for detection and study of other molecular interaction.

The Hydrogen Gas Sensing Characteristics of the Pd-doped $SnO_2$ Thin Films Prepared by Sputtering (스퍼터링법으로 제조된 Pd-doped $SnO_2$ 박막의 수소가스 감도 특성)

  • 차경현;김영우;박희찬;김광호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.9
    • /
    • pp.701-708
    • /
    • 1993
  • Pd-doped SnO2 thin films for hydrogen gas sensing were fabricated by reactive fo magnetron sputtering and were studied on effects of film thickness and Pd doping content. Pd doping caused the optimum sensor operation temperature to reduce down to ~25$0^{\circ}C$ and also enhanced gas sensitivity, compared with undoped SnO2 film. Gas sensitivity depended on the film thickness. The sensitivity increased with decreasing the film thickness, showing maximum sensitivities at the thickness of 730$\AA$ and 300~400$\AA$ for the undoped SnO2 and the Pd-doped SnO2 film, respectively. Further decrease of the film thickness beyond these thickness ranges, however, resulted in the reduction of sensitivity again.

  • PDF

High Fidelity Color Capturing of CCD-Camera System by Using of Spectral Sensitivity Model (스펙트럼 특성 모델을 이용한 CCD카메라 시스템의 고성능 칼라 Capturing)

  • 이상진;신윤철;김일도;김문철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1751-1754
    • /
    • 2003
  • CCD Camera System으로 capture 한 image를 표준 display장치로 재현할 때 capture 할 당시의 원 피사체의 모습을 그대로 재현하여야만 한다. 그러나 일반 consumer 용 camera system의 CCD channel spectral sensitivity 특성이 인간의 spectral sensitivity(1(λ), m(λ), 5(λ)) 특성과 일치하지 않고, linear transform의 관계도 성립하지 않음으로써 capturing시 근본적인 color error가 발생하게 된다. 기존의 CCD Camera System 에서는 CCD sensor 의 color 정보와 display 장치의 color 정보와의 단순한 산술적인 관계로 color를 재구성하는 방법을 사용하고 있어 원 피사체의 color 를 그대로 재현할 수가 없다. 본 논문에서 제시하는 알고리즘은 CCD 의 channel spectral sensitivity특성 과 CIE-color matching function과의 관계를 고려하여 color를 재구성함으로써 color error를 줄이도록 하였다 제시된 알고리즘의 color error를 검증하기 위하여 물체의 고유반사율을 알고 있는 AGFA IT8.7-2 test chart(283 spectra), Dupont Paint Chips(120 spectra), Mcbeth Color Checker(64 spectra) 및 Natural Objects(170 spectra) 등 다양한 objects spectra(637 spectra) [1][2]를 이용하여 기존 방법의 알고리즘과 비교하여 보았다.

  • PDF

Sensitivity Enhancement of Surface Plasmon Resonance Biosensor with Colloidal Gold

  • Kibong Choi;Hee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.3 no.1
    • /
    • pp.19-23
    • /
    • 1998
  • We enhanced the sensitivity of surface plasmon resonance biosensor by the conversion of the real-time direct binding immunoassay into the sandwich immunoassay, in which colloidal gold particles coated with anti-mouse IgG was used. By the immobilization of anti-mouse IgG onto the carboxymethyl dextran surface of thin gold film, the direct binding of analyte(mouse IgG) onto the sensor chip, and the injection of colloidal gold particles coated with anti-mouse IgG, about 100 times of sensitivity enhancement was obtained. This result suggests that nanoparticles, which has a high refractive index, homogeneous ultrafine structure and capability of size control, would be applicable for the detection of very small quantity of biomaterial.

  • PDF