• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,898, Processing Time 0.025 seconds

Percolation threshold and piezoresistive response of multi-wall carbon nanotube/cement composites

  • Nam, I.W.;Souri, H.;Lee, H.K.
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.217-231
    • /
    • 2016
  • The present work aims to develop piezoresistive sensors of excellent piezoresistive response attributable to change in nanoscale structures of multi-wall carbon nanotube (MWNT) embedded in cement. MWNT was distributed in a cement matrix by means of polymer wrapping method in tandem with the ultrasonication process. DC conductivity of the prepared samples exhibited the electrical percolation behavior and therefore the dispersion method adopted in this study was deemed effective. The integrity of piezoresistive response of the sensors was assessed in terms of stability, the maximum electrical resistance change rate, and sensitivity. A composite sensor with MWNT 0.2 wt.% showed the lowest stability and sensitivity, while the maximum electrical resistance change rate exhibited by this sample was the highest (96 %) among others and even higher than those found in the literature. This observation was presumably attributed by the percolation threshold and the tunneling effect. As a result of the MWNT content (0.2 wt.%) of the sensor being near the percolation threshold (0.25 wt.%), MWNTs were close to each other to trigger tunneling in response of external loading. The sensor with MWNT 0.2 wt.% was able to maintain the repeatable sensing capability while sustaining a vehicular loading on road, demonstrating the feasibility in traffic flow sensing application.

Covered Microlens Structure for Quad Color Filter Array of CMOS Image Sensor

  • Jae-Hyeok Hwang;Yunkyung Kim
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.485-495
    • /
    • 2023
  • The pixel size in high-resolution complementary metal-oxide-semiconductor (CMOS) image sensors continues to shrink due to chip size limitations. However, the pixel pitch's miniaturization causes deterioration of optical performance. As one solution, a quad color filter (CF) array with pixel binning has been developed to enhance sensitivity. For high sensitivity, the microlens structure also needs to be optimized as the CF arrays change. In this paper, the covered microlens, which consist of four microlenses covered by one large microlens, are proposed for the quad CF array in the backside illumination pixel structure. To evaluate the optical performance, the suggested microlens structure was simulated from 0.5 ㎛ to 1.0 ㎛ pixels at the center and edge of the sensors. Moreover, all pixel structures were compared with and without in-pixel deep trench isolation (DTI), which works to distribute incident light uniformly into each photodiode. The suggested structure was evaluated with an optical simulation using the finite-difference time-domain method for numerical analysis of the optical characteristics. Compared to the conventional microlens, the suggested microlens show 29.1% and 33.9% maximum enhancement of sensitivity at the center and edge of the sensor, respectively. Therefore, the covered microlens demonstrated the highly sensitive image sensor with a quad CF array.

The Sensing Characteristics of $WO_3$ Thin Films for $NO_x$ Gas Detection with the Change of Deposition Methods (증착방법에 따른 $NO_x$가스 감지용 $WO_3$박막센서의 특성 변화 연구)

  • 김태송;김용범;유광수;성기숙;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.4
    • /
    • pp.387-393
    • /
    • 1997
  • In order to apply WO3 thin films to the semiconducting NOx gas sensors as a sensing material, which have been expected to show good electrical properties, such as large sensitivity, rapid responsibility, and high selectivity, the fabrication method and their sensing characteristics were studied. The variations of surface morphologies, crystallographic orientations and crystallinity with the WO3 thin film growing methods thermal evaporation and DC sputtering methods were investigated by using scanning electron microscopy (SEM) and X-ray diffraction(XRD) analysis. As a result of sensitivity (Rgas/Rair) measurements for the 5 ppm NO2 test gas, the sensitivity values were 113 for the sputtered films and 93 for the evaporated films. It was also observed that the recovery rate of a sensing signal after measuring sensitivity was faster in the sputtered films than in the evaporated films.

  • PDF

Sensitivity Characteristics of Acoustic Emission(AE) Sensor using the Lead-free (Na1,K)NbO3 Ceramics (무연 (Na1,K)NbO3 계 세라믹스를 이용한 AE센서의 감도특성)

  • Yoo, Ju-Hyun;Lee, Gab-Soo;Hong, Jae-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.218-222
    • /
    • 2007
  • In this study, Acoustic emission(AE) sensors were fabricated using lead-free piezoelectric ceramics for prohibiting environmental pollution. Structure of AE sensors were designed as Langvin type air backing form. Here, the piezoelectic element was used as PZT(EC-65)(AE1) and NKN(AE2), respectively. The measured resonant frequency, the maximum sensitivity frequency and sensitivity of AE sensors were as follows ; 143 kHz, 29.4 kHz and 69.3 dB in AE1 and 179 kHz, 29.4 kHz and 66.3dB in AE2, respectively.

Fabrication of Polyimide Film Electrode by Laser Ablation and Application for Electrochemical Glucose Biosensor (Laser ablation을 이용한 폴리이미드 필름 전극제조 및 전기화학적 글루코오즈 바이오센서 응용)

  • Park, Deog-Su
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.357-363
    • /
    • 2013
  • An ultraviolet pulsed laser ablation of polyimide film coated with platinum has been used to enhance the sensitivity for the application as an electrochemical biosensor. Densely packed cones are formed on polyimide surface after UV irradiation which results in increase of surface area. In order to apply the sensitivity improvement of laser ablated polyimide film electrodes, the glucose oxidase modified biosensor was fabricated by using an encapsulation in the gel matrix through sol-gel transition of tetraethoxysliane on the surface of laser ablated polyimide film. The optimum conditions for glucose determination have been characterized with respect to the applied potential and pH. The linear range and detection limit of glucose detection were from 2.0 mM to 18.0 mM and 0.18 mM, respectively. The sensitivity of glucose biosensors fabricated with laser ablated polyimide film is about three times higher than that of plain polyimide film due to increase in surface area by laser ablation.

Sensitivity Elevation about Spirometer Using Ultrasound Sensing Method (초음파 센싱 방식의 spirometer에 대한 sensitivity 향상)

  • 한승헌;김영길
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.269-272
    • /
    • 2004
  • The respiration measurement method using the ultrasound sensor hardly gets an influence of an error of inertia and pressure and it is a respiratory detection device available semi-permanently. This device measures the amount and flow of respiration through using a delivery speed difference of the ultrasound waves that are a return format by the pneumatic stream that is a flogging of ultrasound waves during transmission and receipt as having used a characteristic of ultrasound waves. In this paper, it improved sensitivity of a signal to happen during transmission and receipt of a sensor because measurement must be performed with a patient to the center and measurement was played in a weak breathing so that it was possible.

  • PDF

Optimization of vertical SOI slot optical waveguide with confinement factor and sensitivity for integrated-optical biochemical sensors (구속계수와 감지도에 기반한 집적광학 바이오케미컬 센서에 적합한 수직 SOI 슬롯 광 도파로 최적화)

  • Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.131-138
    • /
    • 2021
  • The optimization of the specifications of vertical silicon on insulator (SOI) slot optical waveguides suitable for integrated-optical biochemical sensors was performed through computational analysis of the confinement factor of the guided mode distributed in the slot in addition to analytical examination of the TE mode. The optimized specifications were confirmed based on sensitivity in terms of the change in the refractive index of the biochemical analyte. When the slot width, rail width, and height were set to 120 nm, 200 nm, and 320 nm, respectively, the confinement factor was evaluated to be about 56% and the sensitivity was at least 0.9 [RIU/nm].

Sensitivity Analysis for Specifications of Silicon-on-Insulator (SOI) Slot Optical Waveguide-based Single and Add-drop Channel Ring-resonant Biochemical Integrated Optical Sensors (SOI 슬롯 광 도파로 기반 단일 및 삽입-분기 채널 링-공진형 바이오·케미컬 집적광학 센서의 제원에 대한 감도 해석)

  • Jang, Jaesik;Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.107-114
    • /
    • 2022
  • The effects of ring radius and coupling spacing on the free spectral range (FSR), full width at half maximum (FWHM), quality factor, and sensitivity of single-channel and add-drop channel slot ring resonators were systematically investigated using FIMMPROP and PICWAVE numerical software. The single-channel ring resonator exhibited better characteristics, namely, a wider FSR and narrower FWHM compared with the add-drop structure; thus, it was evaluated to be more suitable for biochemical sensors. The FSR, FWHM, quality factor, and sensitivity for a single channel ring resonator with a radius of 59.4 ㎛ and coupling gap of 0.5 ㎛ were 2.4 nm, 0.087 nm, 17677, and 550 [nm/RIU], respectively.

Proposition of a Vibration Based Acceleration Sensor for the Fully Implantable Hearing Aid (완전 이식형 보청기를 위한 진동 기반의 가속도 센서 제안)

  • Shin, Dong Ho;Mun, H.J.;Seong, Ki Woong;Cho, Jin-Ho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.2
    • /
    • pp.133-141
    • /
    • 2017
  • The hybrid acoustic sensor for implantable hearing aid has the structure in which a sound pressure based acoustic sensor (ECM) and a vibration based acceleration sensor are combined. This sensor combines the low frequency sensitivity of an acoustic sensor with the high frequency sensitivity of an acceleration sensor, allowing the acquisition of a wide range of sound from low to high frequency. In this paper, an acceleration sensor for use in a hybrid acoustic sensor has been proposed. The acceleration sensor captures the vibration of the tympanic membrane generated by the acoustic signal. The size of the proposed acceleration sensor was determined to diameter of 3.2 mm considering the anatomical structure of the tympanic membrane and the standard of ECM. In order to make the hybrid acoustic sensor have high sensitivity and wide bandwidth characteristics, the aim of the resonance frequency of the acceleration sensor is to be generated at about 3.5 kHz. The membrane of the acceleration sensor derives geometric structure through mathematical model and finite element analysis. Based on the analysis results, the membrane was implemented through a chemical etching process. In order to verify the frequency characteristics of the implemented membrane, vibration measurement experiment using external force was performed. The experiment results showed mechanical resonance of the membrane occurred at 3.4 kHz. Therefore, it is considered that the proposed acceleration sensor can be utilized for a hybrid acoustic sensor.

High Temperature Silicon Pressure Sensor of SDB Structure (SDB 구조의 고온용 실리콘 압력센서)

  • Park, Jae-Sung;Choi, Deuk-Sung;Kim, Mi-Mok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.305-310
    • /
    • 2013
  • In this paper, the pressure sensor usable in a high temperature, using a SDB(silicon-direct-bonding) wafer of Si/$SiO_2$/Si-sub structure was provided and studied the characteristic thereof. The pressure sensor produces a piezoresistor by using a single crystal silicon as a first layer of SDB wafer, to thus provide a prominent sensitivity, and dielectrically isolates the piezoresistor from a silicon substrate by using a silicon dioxide layer as a second layer thereof, to be thus usable even under the high temperature over $120^{\circ}C$ as a limited temperature of a general silicon sensor. The measured result for a pressure sensitivity of the pressure sensor has a characteristic of high sensitivity, and its tested result for an output of the sensor further has a very prominent linearity and hysteresis characteristic.