• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,898, Processing Time 0.028 seconds

Increased Sensitivity of Carbon Nanotube Sensors by Forming Rigid CNT/metal Electrode

  • Park, Dae-Hyeon;Jeon, Dong-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.348-348
    • /
    • 2011
  • Carbon nanotube (CNT) field effect transistors and sensors use CNT as a current channel, of which the resistance varies with the gate voltage or upon molecule adsorption. Since the performance of CNT devices depends very much on the CNT/metal contact resistance, the CNT/electrode contact must be stable and the contact resistance must be small. Depending on the geometry of CNT/electrode contact, it can be categorized into the end-contact, embedded-contact (top-contact), and side-contact (bottom-contact). Because of difficulties in the sample preparation, the end-contact CNT device is seldom practiced. The embedded-contact in which CNT is embedded inside the electrode is desirable due to its rigidness and the low contact resistance. Fabrication of this structure is complicated, however, because each CNT has to be located under a high-resolution microscope and then the electrode is patterned by electron beam lithography. The side-contact is done by depositing CNT electrophoretically or by precipitating on the patterned electrode. Although this contact is fragile and the contact resistance is relatively high, the side-contact by far has been widely practiced because of its simple fabrication process. Here we introduce a simple method to embed CNT inside the electrode while taking advantage of the bottom-contact process. The idea is to utilize a eutectic material as an electrode, which melts at low temperature so that CNT is not damaged while annealing to melt the electrode to embed CNT. The lowering of CNT/Au contact resistance upon annealing at mild temperature has been reported, but the electrode in these studies did not melt and CNT laid on the surface of electrode even after annealing. In our experiment, we used a eutectic Au/Al film that melts at 250$^{\circ}C$. After depositing CNT on the electrode made of an Au/Al thin film, we annealed the sample at 250$^{\circ}C$ in air to induce eutectic melting. As a result, Au-Al alloy grains formed, under which the CNT was embedded to produce a rigid and low resistance contact. The embedded CNT contact was as strong as to tolerate the ultrasonic agitation for 90 s and the current-voltage measurement indicated that the contact resistance was lowered by a factor of 4. By performing standard fabrication process on this CNT-deposited substrate to add another pair of electrodes bridged by CNT in perpendicular direction, we could fabricate a CNT cross junction. Finally, we could conclude that the eutectic alloy electrode is valid for CNT sensors by examine the detection of Au ion which is spontaneously reduced to CNT surface. The device sustatined strong washing process and maintained its detection ability.

  • PDF

On-site Water Nitrate Monitoring System based on Automatic Sampling and Direct Measurement with Ion-Selective Electrodes

  • Kim, Dong-Wook;Jung, Dae-Hyun;Cho, Woo-Jae;Sim, Kwang-Cheol;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2017
  • Purpose: In-situ monitoring of water quality is fundamental to most environmental applications. The high cost and long delays of conventional laboratory methods used to determine water quality, including on-site sampling and chemical analysis, have limited their use in efficiently managing water sources while preventing environmental pollution. The objective of this study was to develop an on-site water monitoring system consisting mainly of an Arduino board and a sensor array of multiple ion selective electrodes (ISEs) to measure the concentration of $NO_3$ ions. Methods: The developed system includes a combination of three ISEs, double-junction reference electrode, solution container, sampling system consisting of three pumps and solenoid valves, signal processing circuit, and an Arduino board for data acquisition and system control. Prior to each sample measurement, a two-point normalization method was applied for a sensitivity adjustment followed by an offset adjustment to minimize the potential drift that could occur during continuous measurement and standardize the response of multiple electrodes. To investigate its utility in on-site nitrate monitoring, the prototype was tested in a facility where drinking water was collected from a water supply source. Results: Differences in the electric potentials of the $NO_3$ ISEs between 10 and $100mg{\cdot}L^{-1}$ $NO_3$ concentration levels were nearly constant with negative sensitivities of 58 to 62 mV during the period of sample measurement, which is representative of a stable electrode response. The $NO_3$ concentrations determined by the ISEs were almost comparable to those obtained with standard instruments within 15% relative errors. Conclusions: The use of the developed on-site nitrate monitoring system based on automatic sampling and two-point normalization was feasible for detecting abrupt changes in nitrate concentration at various water supply sites, showing a maximum difference of $4.2mg{\cdot}L^{-1}$ from an actual concentration of $14mg{\cdot}L^{-1}$.

Ammonia gas sensing characteristics of LaFeO3 thick-films With Al2O3 additives (Al2O3를 첨가한 LaFeO3 후막의 암모니아 가스 감지특성)

  • Kim, Jun-Gon;Ahn, Byeong-Yeol;Ma, Tae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.18-27
    • /
    • 2002
  • $LaFeO_3$-based thick films with 2wt.%, 5wt.% and 10wt.% $Al_2O_3$ additives were fabricated by screen printing method on $Al_2O_3$ substrates. Structural, electrical and ammonia gas sensing characteristics of the thick films with different heat treatment temperatures were examined. From XRD results, the compound of $LaFeO_3$ and $Al_2O_3$ was not found until the heat treatment at $1200^{\circ}C$. SEM microphotograph showed similar grain growth despite the amount of $Al_2O_3$ additives with the heat treatment. Thick films with high activation energy and low resistance in the electrical properties showed high sensitivity for gases. Thick films with 2wt % $Al_2O_3$ additives heat-treated at $1200^{\circ}C$ showed the sensitivities of 210% for 100 ppm $NH_3$ gas at the working temperature of $350^{\circ}C$. The thick films showed food selectivity to $NH_3$ gas.

Analysis of Temperature Characteristics on Accelerometer using SOI Structure (SOI 구조 가속도센서의 온도 특성 해석)

  • Son, Mi-Jung;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • One of today's very critical and sensitive accurate accelerometer which can be used higher temperature than $200^{\circ}C$ and corrosive environment, is particularly demanded for automotive engine. Because silicon is a material of large temperature dependent coefficient, and the piezoresistors are isolated with p-n junctions, and its leakage current increase with temperature, the performance of the silicon accelerometer degrades especially after $150^{\circ}C$. In this paper, The temperature characteristic of a accelerometer using silicon on insulator (SOI) structure is studied theoretically, and compared with experimental results. The temperature coefficients of sensitivity and offset voltage (TCS and TCO) are related to some factors such as thermal residual stress, and are expressed numerically. Thermal stress analysis of the accelerometer has also been carried out with the finite-element method(FEM) simulation program ANSYS. TCS of this accelerometer can be reduced to control the impurity concentration of piezoresistors, and TCO is related to factors such as process variation and thermal residual stress on the piezoresistors. In real packaging, The avarage thermal residual stress in the center support structure was estimated at around $3.7{\times}10^4Nm^{-2}^{\circ}C^{-1}$ at sensing resistor. The simulated ${\gamma}_{pT}$ of the center support structure was smaller than one-tenth as compared with that of the surrounding support structure.

  • PDF

Study on Growth and Opto-Electrical Characterization of $CdS_{1-x}Se_{x}$ Thin Film using Chemical Bath Deposition Method (CBD 방법에 의한 $CdS_{1-x}Se_{x}$ 박막의 열처리에 따른 광전기적 특성)

  • Hong, K.J.;Choi, S.P.;Lee, S.Y.;You, S.H.;Shin, Y.J.;Lee, K.K.;Suh, S.S.;Kim, H.S.;Yun, E.H.;Kim, S.U.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;KIm, T.S.;Moon, J.D.;Jeon, S.L.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.51-63
    • /
    • 1995
  • Polycrystalline $CdS_{1-x}Se_{x}$ thin films were grown on ceramic substrate using a chemical bath deposition method. They were annealed at various temperature and X-ray diffraction patterns were measured by X-ray diffractometer in order to study $CdS_{1-x}Se_{x}$ polycrystal structure using extrapolation method of X-ray diffraction patterns for the CdS, CdSe samples annealed in $N_{2}$ gas at $550^{\circ}C$ it was found hexagonal structure which had the lattice constant $a_{0}=4.1364{\AA}$, $c_{0}=6.7129{\AA}$ in CdS and $a_{0}=4.3021{\AA}$, $c_{0}=7.0142{\AA}$ in CdSe, respectively. Hall effect on these samples was measured by Van der Pauw method and then studied on carrier density and mobility depending on temperature. We measured also spectral response, sensitivity(${\gamma}$), maximum allowable power dissipation and response time on these samples.

  • PDF

Growth of $CdS_{0.67}Se_{0.33}$ single crystal by sublimation method and their photoconductive characteristics (승화법에 의한 $CdS_{0.67}Se_{0.33}$ 단결정 성장과 광전도 특성)

  • Hong, K.J.;Lee, S.Y.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.131-139
    • /
    • 1998
  • $CdS_{0.67}Se_{0.33}$ single crystal was grown by vertical sublimation method of closed tube physical vapour deposition. The (0001) growth plane of oriented single crystals was confirmed from the back-ref1ection Laue patterns. From the Hall effects by van der Pauw method, the as-grown $CdS_{0.67}Se_{0.33}$ single crystals were found to be n-type semiconductors. The mobility appeared to be decreased by lattice scattering at temperature range from 150K to 293K and by impurity scattering at temperatures ranging from 30K to 150K In order to explore its applicability in photoconductive cells, we measured the ratio of photo-current to dark-current (pc/dc), maximum allowable power dissipation (MAPD), spectral response and response time respectively. The results indicated that for the samples annealed in Cu vapour the photoconductive characteristics are best. We obtained sensitivity of 0.99, the value of pc/de of $1.84{\times}10^{7}$, the MAPD of 323mW and the rise and decay time of 9.3 ms and 9.7 ms, respectively.

  • PDF

Growth of Thin Film using Chemical Bath Deposition Method and Their Photoconductive Characterics ($Cd_{1-x}Zn_{x}S$ 박막의 성장과 광전도 특성)

  • Lee, S.Y.;Hong, K.J.;You, S.H.;Shin, Y.J.;Lee, K.K.;Suh, S.S.;Kim, H.S.;Yun, E.H.;Kim, S.U.;Park, H.S.;Shin, Y.J.;Jeong, T.S.;Shin, H.K.;Kim, T.S.;Moon, J.D.;Lee, C.I.;Jeon, S.L.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.60-70
    • /
    • 1995
  • Polycrystalline $Cd_{1-x}Zn_{x}S$ thin film were grown on slide glass(corning-2948) substrate using a chemical bath deposition (C.B.D) method. They were annealed at various temperature and X -ray diffraction patterns were measured by X-ray diffractometor in order to study $Cd_{1-x}Zn_{x}S$ polycrystal structure using extrapolation method of X-ray diffraction patterns for the CdS, ZnS sample annealed in $N_{2}$ gas at $550^{\circ}C$. It was found hexagonal structure which had the lattice constant $a_{0}\;=\;4.1364{\AA}$, $c_{0}\;=\;6.7129{\AA}$ in CdS and $a_{0}\;=\;3.8062{\AA}$, $c_{0}\;=\;6.2681{\AA}$ in ZnS, respectively. Hall effect on these sample was measured by Van der Pauw method and then studied on carrier density and mobility depending on temperature. We measured also spectral response, sensitivity maximum allowable power dissipation and response time on these sample.

  • PDF

Intercomparison between Temperature and Humidity Sensors of Radiosonde by Different Manufacturers in the ESSAY (Experiment on Snow Storms At Yeongdong) Campaign (대설관측실험(Experiment on Snow Storms At Yeongdong: ESSAY) 기간 중 두 제조사 라디오존데 기온과 습도 센서 상호 비교)

  • Seo, Won-Seok;Eun, Seung-Hee;Kim, Byung-Gon;Seong, Dae-Kyeong;Lee, Gyu-Min;Jeon, Hye-Rim;Choi, Byoung-Cheol;Ko, A-reum;Chang, Ki-Ho;Yang, Seung-Gu
    • Atmosphere
    • /
    • v.26 no.2
    • /
    • pp.347-356
    • /
    • 2016
  • Radiosonde is an observation equipment that measures pressure (geopotential height), temperature, relative humidity and wind by being launched up from the ground. Radiosonde data which serves as an important element of weather forecast and research often causes a bias in a model output due to accuracy and sensitivity between the different manufacturers. Although Korean Meteorological Administration (KMA) and several institutes have conducted routine and intensive radiosonde observations, very few studies have been done before on the characteristics of radiosonde performance. Analyzing radiosonde observation data without proper understanding of the unique nature of those sensors may lead to a significant bias in the analysis of results. To evaluate performance and reliability of radiosonde, we analyzed the differences between two sensors made by the different manufacturers, which have been used in the campaign of Experiment on Snow Storm At Yeongdong (ESSAY). We improved a couple of methods to launch the balloon being attached with the sensors. Further we examined cloud-layer impacts on temperature and humidity differences for the analysis of both sensors' performance among various weather conditions, and also compared daytime and nighttime profiles to understand temporal dependence of meteorological sensors. The overall results showed that there are small but consistent biases in both temperature and humidity between different manufactured sensors, which could eventually secure reliable precisions of both sensors, irrespective of accuracy. This study would contribute to an improved sounding of atmospheric vertical states through development and improvement of the meteorological sensors.

Porous silicon : a new material for microsensors and microactuators (다공질 실리콘: 새로운 마이크로센서 및 마이크로액추에이터 재료)

  • Min Nam Ki;Chi Woo Lee;Jeong Woo Sik;Kim Dong Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 1999
  • Since the use of porous silicon for microsensors and microactuators is in the euly stage of study, only several application devices, such as light-emitting diodes and chemical sensors have so far been demonstrated. In this paper we present an overview of the present status of porous silicon sensors and actuators research with special emphasis on the applications of chemical sensors and optical devices. The capacitive type porous silicon humidity sensors had a nonlinear capacitance-humidity characteristic and a good sensitivity at higher humidity above $40\%RH$. The porous silicon $n^+-p-n^+$ device showed a sharp increase in current when exposed to an ethanol vapor. The $p^+-PSi-n^+$ diode fabricated on porous silicon diaphragm exhibited an optical switching characteristic, opening up its utility as an optical sensor or switch. The photoluminescence (PL) spectrum, taken from porous silicon under 365 nm excitation, had a broad emission, peaked at -610 nm. The electroluminescence(EL) from ITO/PSi/In LED had a broader spectrum with a blue shifted peak at around 535nm than that of the PL.

Effects of Process Variables on the Microstructure and Gas Sensing Characteristics of Magnetron Sputtered $\textrm{SnO}_2$Thin Films (마그네트론 스퍼터링 증착 조건에 따른 $\textrm{SnO}_2$ 박막의 미세구조와 가스검지특성 변화)

  • Kim, Jong-Min;Moon, Jong-Ha;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1083-1087
    • /
    • 1999
  • Microstructures and the gas-sensing characteristics of the $\textrm{SnO}_2$ thin films were studied, which were deposited at various conditions (rf power, sample temperature, $\textrm{O}_2$/Ar ratio) by the rf magnetron sputtering. As a result, six typical microstructures were derived, such as amorphous(A), amorphous mixed with polycrystalline grains (A+P), polycrystalline with random crystalographic orientation (P), fine columnar (FC), coarse columnar (CC) and Zone T (T) with dense fiberous structure. Typically, A, A+ P, and P structures were formed when no $\textrm{O}_2$ was added to the sputter gas, whereas FC, CC, and T structures were obtained when $\textrm{O}_2$ was added. The A structure formed at low rf power and low temperature, the A+P at high rf power and low temperature, and the P at high rf power and high temperature. The FC structure was obtained at low rf power and low temperature. the CC at low rf power and high temperature, and the T at high rf power and low temperature. Results of the gas-sensing test of the sensor chips fabricated from the typical films indicated that the fine columnar microstructure shows the highest sensitivity both at $300^{\circ}C$ and $400^{\circ}C$. It was proposed that this is due to the high specific surface area of the micro-columns.

  • PDF