• Title/Summary/Keyword: Sensor Sensitivity

Search Result 1,899, Processing Time 0.053 seconds

Fabrication and Improved Sensitivity with Surface Treatment of TiO2/GOD Mixture based Glucose Biosensor (TiO2/GOD 혼합물 기반의 글루코스 바이오 센서의 제작과 표면 처리를 통한 감도개선)

  • Lee, Junyeop;Jung, Dong Geon;Lee, Jae Yong;Kim, Jae Keon;Jung, Daewoong;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.170-174
    • /
    • 2018
  • In this paper, the $TiO_2$/glucose oxidase (GOD) mixture has synthesized through simple and low-cost fabrication methods. The physical properties of the mixture were proved using an FT-IR/NIR spectrometer, an X-Ray diffractometer, and a Raman spectrometer. GOD maintained its bioactivity during all fabrication process. The current characteristics of the glucose biosensor were proportional to the glucose concentration and effective surface area of square pyramid on a silicon substrate. The maximum current change was measured in a pH 7.0 buffer solution. The simple and low-cost fabrication process and surface treatment can be used widely in previous research for improvements in effective surface area.

Rapid Detection Kit for Salmonella typhimurium (살모넬라 식중독균 신속 검출용 간이 진단키트)

  • Kim, Gi-Young;Yang, Gil-Mo;Park, Saet-Byeol;Kim, Yung-Hwun;Lee, Kang-Jin;Son, Jae-Yong;Kim, Hyuck-Joo;Lee, Sae-Rom
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.140-146
    • /
    • 2011
  • This study was performed to develop a rapid test kit for pathogenic Salmonella in various samples. The rapid detection kit has been fabricated based on nitrocellulose lateral-flow strip. Colloidal gold and biotin conjugated Salmonella antibodies were used as a tag and a receptor, respectively. Manually spotted Salmonella antibody and Neutravidin on nitrocellulose membrane were used as test and control lines, respectively. Feasibility of the rapid kit to detect Salmonella typhimurium in samples were evaluated. The intensity of the color of the test line started to increase with the samples in which higher concentration of the cells were contained. The sensitivity of the sensor was $10^6$ cfu/mL Salmonella spiked in PBS. Also, the rapid test kit could detect $10^6$ cfu/mL of Salmonella in chicken meat extract.

An Automated Fiber-optic Biosensor Based Binding Inhibition Assay for the Detection of Listeria Monocytogenes

  • Kim, Gi-Young;Morgan, Mark;Ess, Daniel;Hahm, Byoung-Kwon;Kothapalli, Aparna;Bhunia, Arun
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.337-342
    • /
    • 2007
  • Conventional methods for pathogen detection and identification are labor-intensive and take days to complete. Biosensors have shown great potential for the rapid detection of foodborne pathogens. Fiber-optic biosensors have been used to rapidly detect pathogens because they can be very sensitive and are simple to operate. However, many fiber-optic biosensors rely on manual sensor handling and the sandwich assay, which require more effort and are less sensitive. To increase the simplicity of operation and detection sensitivity, a binding inhibition assay method for detecting Listeria monocytogenes in food samples was developed using an automated, fiber-optic-based immunosensor: RAPTOR (Research International, Monroe, WA, USA). For the assay, fiber-optic biosensors were developed by the immobilization of Listeria antibodies on polystyrene fiber waveguides through a biotin-avidin reaction. Developed fiber-optic biosensors were incorporated into the RAPTOR to evaluate the detection of L. monocytogenes in frankfurter samples. The binding inhibition method combined with RAPTOR was sensitive enough to detect L. monocytogenes ($5.4{\times}10^7\;CFU/mL$) in a frankfurter sample.

An Implementation of ARM 920T Processor-based Ultrasonic Spirometer and Improvement of Its Sensitivity (ARM 920T 프로세서 기반의 초음파 폐활량계 구현 및 감도 향상 연구)

  • Lee, Cheul-Won;Kim, Young-Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.4
    • /
    • pp.268-273
    • /
    • 2005
  • The spirometer is a medical device that measures the instantaneous velocity of the respiratory gas flow capacity. It is used for testing the condition of the lung and patient monitoring. It measures the absolute capacity difference that includes the flow capacity signal. In this paper, by using an ultrasound sensor that reduce+ the error caused by the inertia and pressure it has improved the transmission and receiving signal. This has enabled patients with weak respiratory to use the spirometer. Also, by using the ARM 920T Processor, a precise and prompt detection system was implemented.

The Development of In-Plane Displacement Measurement System on Laser Speckle Interferometry (레이저 스페클 간섭법을 이용한 면내변위 측정시스템 개발)

  • Yoon H.S.;Kim K.S.;Park C.J.;Choi T.H.;Choi J.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.556-560
    • /
    • 2005
  • The measurement method by Laser Speckle Interferometry which uses the interference law which will grow precedes and with it explains a resolution measurement ability and together the change of place arrowhead and general measurement, at real-time measurement sensitivity it has application boat song from candle precise measurement field it is increasing. But, currently the domestic application technique to sleeps and optical science military merit by optical science interferometer and directness it composes purchases to the level which it applies the expensive commercial business equipment the outside and in spite of the technical ripple effect is deficient even in many strong point. The hazard which complements like this problem point form technical development it leads from the research which it sees and an application degree and to sleep as the measurement equipment which tries to develop the small-sized optical science interference sensor and an interpretation program it raises it does.

  • PDF

Application of Oxide Nanofibers Synthesized by Electrospinning to Chemical Sensors

  • Choi, Sun-Woo;Akash, Katoch;Jung, Sung-Hyun;Kim, Sang-Sub
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • Nanofibers, one of various one-dimensional nanomaterials such as nanorods, nanowires and nanotubes have been successfully synthesized by many groups in recent years and their applications to chemical sensors, catalytic filters and biomedicine, etc. are extensively tested. In particular, there is a possibility that chemical sensors based on oxide nanofibers can overcome the shortcomings of chemical sensors based on single nanowires. In order to prepare oxide nanofibers, the electrospinning method is most widely used. In this work, we synthesized various oxide nanofibers including ZnO, SnO2 and CuO by employing an electrospinning method and various shapes of nanofibers including core-shell nanofibers and hollow nanofibers as well. The response properties of the various nanofibers to oxidizing and reducing gaseous species have been investigated systematically. The normal oxide nanofibers showed high sensitivity and quite fast response time to many gaseous species. Furthermore, derivatives of normal nanofibers including hollow nanofibers, core-shell nanofibers and heterostructured nanofibers display much superior sensing properties. These results hold promise for the practical application of oxide nanofibers to chemical sensors. In addition, the sensing mechanisms operated in the nanofibers will be discussed in detail.

  • PDF

Fabrication and Properties of Piezoelectric Microcantilever for Gas Sensor Application (가스 센서 응용을 위한 압전 마이크로 칸티레버의 제작 및 특성)

  • 신상훈;송상근;백준규;박효덕;이재찬
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.75-75
    • /
    • 2003
  • 본 연구에서는 대기 중 극 미량으로 존재하는 환경 유해 가스 성분을 검출할 수 있는 미세 소자로의 응용을 위해 마이크로 칸티레버를 제작하고 가스 센서로의 활용 가능성을 검토하였다. 마이크로 칸티레버는 크게 구동층 캐패시터로서 대표적인 압전 재료인 Pb(Zr,Ti)O$_3$ (PZT)를 사용하고 SiNx 박막을 지지층으로 하는 형태로 제작되었다. 제작된 마이크로 칸티레버는 치수 및 형상에 따라 17~29 KHz 의 기본 공진 주파수 값을 나타내었다. Electron beam evaporator를 이용한 copper (Cu) 박막의 단계적인 증착을 통해 칸티 레버 표면에 질량을 증가시키고 그에 따른 마이크로 칸티레버의 공진주파수 변화를 관찰한 결과 질량 증가에 대해 34 Hz/ng의 선형적인 주파수 감소를 나타내었으며, 이로부터 694.4 $\textrm{cm}^2$/g 의 gravimetric sensitivity factor를 얼을 수 있었다. 마이크로칸티레버의 가스 감지능력 시험을 위해 가스 흡착층으로 일차 알콜류의 vapor를 흡착 하는 것으로 보고된 poly methyl metacrytate (PMMA)를 마이크로 칸티레버 표면에 코팅하였다. 마이크로칸티 레버의 기본 공진 주파수 및 PMMA 흡착층 형성과 가스의 흡착에 따른 주파수 변화는 마이크로 칸티 레버로부터 의 전기적 신호를 이용하는 복소 임피던스 분석에 의해 측정되었다. PMMA가 코팅된 마이크로 칸티레버는 ethanol 및 methanol vapor 의 농도가 증가함에 따라 선형적인 공진주파수 감소를 나타내었으며, methanol vapor 의 경우 0.06 Hz/ppm 의 가스 검출 감도를 얻을 수 있었다.

  • PDF

Design of Bowing-Activity Monitoring and Automatic Detection System Using 3-Axis Accelerometer (3축-가속도 센서를 이용한 배례(拜禮)동작 모니터링 및 자동검출 시스템 설계)

  • Lee, Young-Jae;Lee, Pil-Jae;Cha, Ji-Young;Sunoo, Sub;Hwang, Jin-Sang;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this paper, a new reliable portable activity monitoring device implemented with the buddhist-style bowing activity and walking step detection algorithm, is presented. In order to monitor the bowing and walking activities, miniaturized 3-axis accelerometer sensor with the sensitivity of 800 mV/g was used. After initial signal conditioning, vector magnitude of accelerometer signals was calculated. Syntactic peak detection method was used in order to feature points. All signal processing algorithms were implemented in ultra-low power microcontroller MSP430 with double precision floating point arithmetic. For evaluation, 19 young man($24.22\pm5.22$ yrs) and woman($22.28\pm2.72$ yrs) were involved. The accuracy of the proposed algorithms were 98.91 %($\pm0.011$) for walking step detection and 98.25 %($\pm0.023$) for buddhist-style bowing activity. Comparing to the commercialized pedometer accuracy, 87.1 %($\pm0.058$), the proposed walking step detection algorithms show more reliable accuracy.

Precision Displacement Measurement of Three-DOF Micro Motions Using Position Sensitive Detector and Spherical Reflector (PSD와 구면반사를 이용한 3자유도 미소 변위의 정밀측정)

  • 이재욱;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.99-104
    • /
    • 2003
  • A precision displacement measurement system of 3-DOF micro motions is proposed in this paper. The measurement system is composed of two diode lasers, two quadratic PSDs, two beam splitters and a sphere whose surface is highly reflective. In this measurement system, the sphere reflector is mounted on the platform of positioning devices whose 3-DOF translational motions are to be measured, and the sensitive areas of two PSDs are oriented toward the center point of the sphere reflector. Each laser beam emitted from two diode laser sources is reflected at the surface of sphere and arrives at two PSDs. Each PSD serves as a 2-dimensional sensor, providing the information on the 3-dimensional position of the sphere. In this paper, we model the relationship between the outputs of two PSDs and 3-DOF translational motions of the sphere mounted on the object. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, and measurement error. The simulation results show that the proposed measurement system can be valid means of precision displacement measurement of 3-dimensional micro motions.

Development of Underwater Wide-band Acoustic Transducer Using the 1-3 Piezoelectric Composite (1-3형 압전복합체를 이용한 광대역 수중 음향 트랜스듀서 개발)

  • Lee, Kyung-Woo;So, Hyoung-Jong;Lim, Sil-Mook;Kim, Won-Ho;Kim, Dae-Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.424-431
    • /
    • 2008
  • Recently, it is required that acoustic transducers for underwater detection and communication sensor have wide bandwidth and low operating frequency. In this research, the new acoustic transducer is proposed. This transducer is tonpilz type, and made of 1-3 piezoelectric composites as a driving parts. The developed transducer is evaluated the TVR(transmission voltage response) and RVS(receiving voltage sensitivity) characteristics around $4{\sim}14\;kHz$ frequency range and is compared to conventional tonpilz transducer made of solid piezoelectric ceramics as a driving parts. The resonance frequency of the developed transducer is decreased by 30% and the -3 dB bandwidth is increased by 90%, compared to conventional transducer with same dimensions. The value of TVR is decreased by 9 dB and The value of RVS is the same at resonance frequency.