• Title/Summary/Keyword: Sensor Query Processing

Search Result 117, Processing Time 0.024 seconds

Energy Efficient Query Processing based on Multiple Query Optimization in Wireless Sensor Networks (무선 센서 네트워크에서 다중 질의 최적화 기법을 이용한 에너지 효율적인 질의 처리 기법)

  • Lee, Yu-Won;Chung, Eun-Ho;Haam, Deok-Min;Lee, Chung-Ho;Lee, Yong-Jun;Lee, Ki-Yong;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.36 no.1
    • /
    • pp.8-21
    • /
    • 2009
  • A wireless sensor network is a computer network which consists of spatially distributed devices, called sensor nodes. In wireless sensor networks, energy efficiency is a key issue since sensor nodes must resides upon limited energy. To retrieve sensor information without dealing with the network issues, a sensor network is treated as conceptual database on which query can be requested. When multiple queries are requested for processing in a wireless sensor network, energy consumption can be significantly reduced if common partial results among similar queries can be effectively shared. In this paper, we propose an energy efficient multi-query processing technique based on the coverage relationship between multiple queries. When a new query is requested, our proposed technique derives an equivalent query from queries running at the moment, if it is derivable. Our technique first computes the set of running queries that may derive a partial result of the new query and then test if this set covers all the result of the new query attribute-wise and tuple-wise. If the result of the new query can be derived from the results of executing queries, the new query derives its result at the base station instead of being executed in the sensor network.

A Prediction-based Energy-conserving Approximate Storage and Query Processing Schema in Object-Tracking Sensor Networks

  • Xie, Yi;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang;Tang, Guoming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.5
    • /
    • pp.909-937
    • /
    • 2011
  • Energy efficiency is one of the most critical issues in the design of wireless sensor networks. In object-tracking sensor networks, the data storage and query processing should be energy-conserving by decreasing the message complexity. In this paper, a Prediction-based Energy-conserving Approximate StoragE schema (P-EASE) is proposed, which can reduce the query error of EASE by changing its approximate area and adopting predicting model without increasing the cost. In addition, focusing on reducing the unnecessary querying messages, P-EASE enables an optimal query algorithm to taking into consideration to query the proper storage node, i.e., the nearer storage node of the centric storage node and local storage node. The theoretical analysis illuminates the correctness and efficiency of the P-EASE. Simulation experiments are conducted under semi-random walk and random waypoint mobility. Compared to EASE, P-EASE performs better at the query error, message complexity, total energy consumption and hotspot energy consumption. Results have shown that P-EASE is more energy-conserving and has higher location precision than EASE.

Energy Join Quality Aware Real-time Query Scheduling Algorithm for Wireless Sensor Networks

  • Phuong, Luong Thi Thu;Lee, Sung-Young;Lee, Young-Koo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.92-96
    • /
    • 2011
  • Nowadays, the researches study high rate and real-time query applications seem to be real-time query scheduling protocols and energy aware real time query protocols. Also the WSNs should provide the quality of data in real time query applications that is more and more popular for wireless sensor networks (WSNs). Thus we propose the quality of data function to merge into energy efficiency called energy join quality aware realtime query scheduling (EJQRTQ). Our work calculate the energy ratio that considers interference of queries, and then compute the expected quality of query and allocate slots to real-time preemptive query scheduler.

Research Directions for Efficient Query Processing over Sensor Data Streams (센서 데이터 스트림 환경에서 효율적인 질의처리 연구방향)

  • An, Dong-Chan
    • KSCI Review
    • /
    • v.14 no.2
    • /
    • pp.199-204
    • /
    • 2006
  • The sensor network is a wireless network of the sensor nodes which sensing, computation and communication ability. Each sensor nodes create the data items by sensor nodes above one. Like this feature, the sensor network is similar to distributed data base system. The sensor node of the sensor network is restricted from the power and the memory resources is the biggest weak point and is becoming the important research object. In this paper, We try to see efficient sensor data stream management method and efficient query processing method under the restricted sensor network environment.

  • PDF

The Multiple Continuous Query Fragmentation for the Efficient Sensor Network Management (효율적인 센서 네트워크 관리를 위한 다중 연속질의 분할)

  • Park, Jung-Up;Jo, Myung-Hyun;Kim, Hak-Soo;Lee, Dong-Ho;Son, Jin-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.867-878
    • /
    • 2006
  • In the past few years, the research of sensor networks is forced dramatically. Specially, while the research for maintaining the power of a sensor is focused, we are also concerned nth query processing related with the optimization of multiple continuous queries for decreasing in unnecessary energy consumption of sensor networks. We present the fragmentation algorithm to solve the redundancy problem in multiple continuous queries that increases in the count or the amount of transmitting data in sensor networks. The fragmentation algorithm splits one query into more than two queries using the query index (QR-4ree) in order to reduce the redundant query region between a newly created query and the existing queries. The R*-tree should be reorganized to the QR-tree right to the structure suggested. In the result, we preserve 20 percentage of the total energy in the sensor networks.

Query Processing Scheme on Sensor Networks (센서 네트워크에서의 질의 처리 기법)

  • Kim, Dong-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.117-119
    • /
    • 2012
  • A sensor network is one of the service infra collecting data using sensor nodes and processing collected data in order to provide necessary information to users. To service data on the sensor networks, it is required to process user queries and retrieve data from the network. In this paper, we propose a basis to classify the schemes processing queries and categorize the existing key researches following the proposed basis.

  • PDF

On Efficient Processing of Continuous Reverse Skyline Queries in Wireless Sensor Networks

  • Yin, Bo;Zhou, Siwang;Zhang, Shiwen;Gu, Ke;Yu, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1931-1953
    • /
    • 2017
  • The reverse skyline query plays an important role in information searching applications. This paper deals with continuous reverse skyline queries in sensor networks, which retrieves reverse skylines as well as the set of nodes that reported them for continuous sampling epochs. Designing an energy-efficient approach to answer continuous reverse skyline queries is non-trivial because the reverse skyline query is not decomposable and a huge number of unqualified nodes need to report their sensor readings. In this paper, we develop a new algorithm that avoids transmission of updates from nodes that cannot influence the reverse skyline. We propose a data mapping scheme to estimate sensor readings and determine their dominance relationships without having to know the true values. We also theoretically analyze the properties for reverse skyline computation, and propose efficient pruning techniques while guaranteeing the correctness of the answer. An extensive experimental evaluation demonstrates the efficiency of our approach.

DISSECTION TECHNIQUE FOR EFFICIENT JOIN OPERATION ON SEMI-STRUCTURED DOCUMENT STREAM

  • Seo, Dong-Hyeok;Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.11-13
    • /
    • 2007
  • There has been much interest in stream query processing. Various index techniques and advanced join techniques have been proposed to efficiently process data stream queries. Previous proposals support rapid and advanced response to the data stream queries. However, the amount of data stream is increasing and the data stream query processing needs more speedup than before. In this paper, we proposed novel query processing techniques for large number of incoming documents stream. We proposed Dissection Technique for efficient query processing in the data stream environment. We focused on the dissection technique in join query processing. Our technique shows efficient operation performance comparing with the other proposal in the data stream. Proposed technique is applied to the sensor network system and XML database.

  • PDF

An Efficient KNN Query Processing Method in Sensor Networks (센서 네트워크에서 효율적인 KNN 질의처리 방법)

  • Son, In-Keun;Hyun, Dong-Joon;Chung, Yon-Dohn;Lee, Eun-Kyu;Kim, Myoung-Ho
    • Journal of KIISE:Databases
    • /
    • v.32 no.4
    • /
    • pp.429-440
    • /
    • 2005
  • As rapid improvement in electronic technologies makes sensor hardware more powerful and capable, the application range of sensor networks Is getting to be broader. The main purpose of sensor networks is to monitor the phenomena in interesting regions (e.g., factory warehouses, disaster areas, wild fields, etc) and return required data. The k Nearest Neighbor (KNN) query that finds k objects which are geographically close to the given point is an Important application in sensor networks. However, most previous approaches are either seem to be impractical or are not energy-efficient in resource-limited sensor networks. In this paper. we propose an efficient KNN query processing method in sensor networks. In the proposed method, we dynamically increase searching boundary, if necessary, and traverse nodes inside the boundary until finding k nearest neighbors. Since only the representative sensor nodes are visited, our algorithm reduces a number of messages. We show thorough experiments that the proposed method performs better than the existing method in various network environments.

An XQuery Processing Engine for Real-Time Sensor Data in Ubiquitous Environments (유비쿼터스 환경에서 실시간 센서 데이터를 위한 XML 질의언어 처리 엔진)

  • Yim, Hyung-Jun;Kim, Jae-Hoon;Lee, Kyu-Chul
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.4
    • /
    • pp.1-19
    • /
    • 2010
  • Recently, it is necessary to process real time sensor data, which is generated from ubiquitous environments. Data, which are written by XML, are small, but, large volumes of data. Therefore, weneed to use an efficient method for processing a large amount of it. An XQuery has two types for sensor data: one is to get sensor identification and value from sensor data; the other is restructuring for user's convenience. Existing XQuery engines don't have efficient method for batch processing of sensor data. This paper proposed the twig query processing over reverse path summary, and we developed and applied restructuring batch processing method for real time processing of a large amount of sensor data. Finally, we do performance evaluation using XMark and RFID EPC data, and comparison analysis with MonetDB/XQuery and Berkeley DB XML.