• Title/Summary/Keyword: Sensor Operating Systems

Search Result 240, Processing Time 0.027 seconds

Elderly Assistance System Development based on Real-time Embedded Linux (실시간 임베디드 리눅스 기반 노약자 지원 로봇 개발)

  • Koh, Jae-Hwan;Yang, Gil-Jin;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.1036-1042
    • /
    • 2013
  • In this paper, an elderly assistance system is developed based on Xenomai, a real-time development framework cooperating with the Linux kernel. A Kinect sensor is used to recognize the behavior of the elderly and A-star search algorithm is implemented to find the shortest path to the person. The mobile robot also generates a trajectory using a digital convolution operator which is based on a Bezier curve for smooth driving. In order to follow the generated trajectory within the control period, we developed real-time tasks and compared the performance of the tracking trajectory with that of non real-time tasks. The real-time task has a better result on following the trajectory within the physical constraints which means that it is more appropriate to apply to an elderly assistant system.

Efficient Successive Transmission Technique in Event Based OS for Sensor Network (센서네트워크를 위한 이벤트 기반 운영체제에서 효율적인 연속적 전송 기법)

  • Lee, Joa-Hyoung;Lim, Hwa-Jung;Seon, Ju-Ho;Jung, In-Bum
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.205-214
    • /
    • 2008
  • To transfer large amount of packets fast in sensor network, it is necessary that the delay between successive packet transmissions should be minimized as possible. In Sensor network, since the Operating Systems are worked on the event driven, the Timer Event is used to transfer packets successively. However, since the transferring time of packet completely is varies very much, it is very hard to set appropriate interval. If interval is too long, delay also becomes too long but if interval is too short, the fail of transfer request would increase. In this paper, we propose ESTEO which reduces the delay between successive packet transmissions by using SendDone Event which informs that a packet transmission has been completed. In ESTEO, the delay between successive packet transmissions is shortened very much since the transmission of next Packet starts at the time when the transmission of previous packet has completed, irrespective of the transmission time. Therefore ESTEO could provide high packet transmission rate given large amount of packets.

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

Design and Implementation of a Smart Signage System based on the Internet of Things(IoT) for Elevators

  • Ryu, Hyunmi;Lee, Guisun;Park, Sunggon;Cho, Sungguk;Jeon, Byungkook
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.184-192
    • /
    • 2019
  • The existing digital signage systems inside the elevators are a lack of tailored contents appropriate to the space and environment inside or outside the elevators. Also, they almost impossible to flexibly respond to various contents disclosure according to the demand of the consumers or the elevator markets. Therefore we design and implement an IoT(Internet of Things)-based smart digital signage system for the safety of elevator passengers.. In order to provide IoT-based information to the smart digital signage within the elevator, we propose an IoT system as a set-top box with gyroscope sensor, acceleration sensor, RFID(Radio-Frequency Identification), fine dust sensor, etc., which processes various data collected by the sensors and provides the elevator passengers with various tailored contents such as elevator driving information, environmental information inside and outside the elevator, and disaster information in addition to simple advertisement information. The proposed IoT system is a set-top box that operates the smart digital signage and has an independent information control processor based on the IoT sensors that do not depend on the elevator control system. For the proposed smart digital signage, it supports an operating system that is independent of the elevator driving service as well as the media service. So the smart signage system has a characteristic that it does not depend on the elevator control system since it is a stand-along IoT-based information control system. With the proposed system providing intuitive content for the surge, steep descent, and radical movements of an elevator due to an emergency situation, the elevator passengers should be able to recognize the situation quickly and respond accordingly. In the near future, the proposed system will expand the market of digital signage applied in conjunction with the development of contents in the disaster, safety and environment fields, and expect expected to revitalize related industries associated with signage.

Design and Implementation of Human and Object Classification System Using FMCW Radar Sensor (FMCW 레이다 센서 기반 사람과 사물 분류 시스템 설계 및 구현)

  • Sim, Yunsung;Song, Seungjun;Jang, Seonyoung;Jung, Yunho
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.364-372
    • /
    • 2022
  • This paper proposes the design and implementation results for human and object classification systems utilizing frequency modulated continuous wave (FMCW) radar sensor. Such a system requires the process of radar sensor signal processing for multi-target detection and the process of deep learning for the classification of human and object. Since deep learning requires such a great amount of computation and data processing, the lightweight process is utmost essential. Therefore, binary neural network (BNN) structure was adopted, operating convolution neural network (CNN) computation in a binary condition. In addition, for the real-time operation, a hardware accelerator was implemented and verified via FPGA platform. Based on performance evaluation and verified results, it is confirmed that the accuracy for multi-target classification of 90.5%, reduced memory usage by 96.87% compared to CNN and the run time of 5ms are achieved.

Monitoring System for Optimized Power Management with Indoor Sensor (실내 전력관리 시스템을 위한 환경데이터 인터페이스 설계)

  • Kim, Do-Hyeun;Lee, Kyu-Tae
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • As the usages of artificial intelligence is increased, the demand to algorithms for small portable devices increases. Also as the embedded system becomes high-performance, it is possible to implement algorithms for high-speed computation and machine learning as well as operating systems. As the machine learning algorithms process repetitive calculations, it depend on the cloud environment by network connection. For an stand alone system, low power consumption and fast execution by optimized algorithm are required. In this study, for the purpose of smart control, an energy measurement sensor is connected to an embedded system, and a real-time monitoring system is implemented to store measurement information as a database. Continuously measured and stored data is applied to a learning algorithm, which can be utilized for optimal power control, and a system interfacing various sensors required for energy measurement was constructed.

Implementation of u-Care System Based on Multi-Sensor in u-Home Environment (u-Home 환경에서 멀티센서 기반 u-Care System 구현)

  • Lee, Hee-Jeong;Kang, Sin-Jae;Jang, Hyung-Geun;Jeong, Chang-Won;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.135-147
    • /
    • 2011
  • As the number of elderly people living alone has been increasing in the recent years, systems for their safety have been required, and some related services or pilot systems have been operating. These systems provide the monitoring service for the activities of the elderly people living alone with indoor location tracking technology using the various sensors. However, most systems provide services on expensive infrastructure such as attached tags and mobile devices. In this point, this paper attempts to suggest a system based on low cost sensors to collect event data in home environment. And a main characteristic of the system is that people can monitor the results of provided services through web browser in real time and the system can provide related context information to guardians and health care managers through SMS of mobile phone.

Compressed Sensing Based Low Power Data Transmission Systems in Mobile Sensor Networks (모바일 센서 네트워크에서 압축 센싱을 이용한 저전력 데이터 전송 시스템)

  • Hong, Jiyeon;Kwon, Jungmin;Kwon, Minhae;Park, Hyunggon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1589-1597
    • /
    • 2016
  • In this paper, we propose a system in a large-scale environment, such as desert and ocean, that can reduce the overall transmission power consumption in mobile sensor network. It is known that the transmission power consumption in wireless sensor network is proportional to the square of transmission distance. Therefore, if the locations of mobile sensors are far from the sink node, the power consumption required for data transmission increases, leading to shortened operating time of the sensors. Hence, in this paper, we propose a system that can reduce the power consumption by allowing to transmit data only if the transmission range of the sensors is within a predetermined distance. Moreover, the energy efficiency of the overall sensor network can even be improved by reducing the number of data transmissions at the sink node to gateway based on compressed sensing. The proposed system is actually implemented using Arduino and Raspberry Pi and it is confirmed that source data can be approximately decoded even when the gateway received encoded data fewer than the required number of data from the sink node. The performance of the proposed system is analyzed in theory.

Construction and Application of a Web-EOC Based Real-Time Monitoring Management System in Steep Slopes (Web-EOC 기반 경사지 실시간 계측관리시스템 구축 및 적용)

  • LEE, Jin-Duk;CHANG, Ki-Tae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.107-119
    • /
    • 2018
  • The slope monitoring systems which have been operating at home and abroad were investigated and then the real-time monitoring management system for evacuating inhabitants based on Web-EOC(Emergency Operating Center) was constructed. We tried to analyze realistically and precisely the situation by changing from the existing field-centered management to sensor-centered management that measures coordinates and provides in real-time data of measuring/monitoring sensors installed at a field site and developing related viewer programs. In addition, the 3D based monitoring management system, which has alarm functions in case of emergency and provides information about the evacuation place, was constructed on the base that is able to expand to nationwide fields by using Vworld 3D map. Ten steep slope monitoring sites were registered on Web-EOC slope monitoring management system constructed in the research and then application instances were suggested.

Research on MFL PIG Design for the Inspection of Underground Gas Pipeline (지하매설 가스관의 검사를 위한 누설자속탐상 PIG 설계에 관한 연구)

  • Park, Sang-Ho;Park, Gwan-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.2
    • /
    • pp.177-186
    • /
    • 2002
  • This paper describes the magnetic flux leakage(MFL) type non-destructive testing(NDT) system to detect the 3D defects in underground gas pipe. Magnetic systems with permanent magnets and yokes are analyzed by 3D non-lineal finite element method(FEM) with optimum design. In case of under-saturation of gas pipe, sensing signals are too weak to detect. In case of over-saturation, the changes of the sensing signals are too low to detect the defects sensitively. So, the operating points of the magnetic system are optimized to increase the changes of the MFL signals. The effects of the depth and size of the defects on the sensing signals are analyzed to define the range and resolution of the MFL sensors. To increase the sensor's sensitivity, the back-yoke sensors are introduced and tested.