• Title/Summary/Keyword: Sensor Mechanism Design

Search Result 146, Processing Time 0.025 seconds

Digital Image Stabilization of Robot Buoy Using the Image of Mechanism (기구 메커니즘의 영상 정보를 이용한 부표 로봇의 영상 안정화)

  • Im, Eun;Myeong, Ho-Jun;Kim, Young-Jin;Yim, Choong-Hyuk;Kim, Dong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.645-651
    • /
    • 2012
  • In this paper, we propose a new method for stabilizing the image captured from a camera mounted on a buoy robot. In this study, in order to solve the problem of cumulative errors and noise produced by a general gyro sensor measuring the orientation angle of the buoy robot, we propose new method for stabilizing the image. In this method, image processing techniques are combined with a newly designed target mounting mechanism that adapts to wave fluctuations. New target extraction and angle estimation techniques are introduced, along with the new mounting mechanism used for the camera and the target, which produce a stabilized image even if the buoy robot is on fluctuating waves.

A study on reduction of structural vibration of an intake manifold system (흡기다기관 시스템의 구조진동 저감에 대한 연구)

  • 윤성호;이귀영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.69-82
    • /
    • 1992
  • Vibration of intake menifold is important as it could worsen the noise levels radiated from surface itself and support bracket, and it eventually leads to the failures of a Throttle Position Sensor and an Idle Air Control Valve. In this study, structural modification method is proposed to reduce structural vibration of an intake manifold system. At first, vibration problems are identified through tests on a running engine. Then modal data acquired by modal testing and finite element analysis are helpful to understand vibration mechanism of the system, and used as the design guide when structural modifications are attempted. After the system model is validated by comparison of the modal data obtained from analysis and experiment, iterative calculations are performed to find optimized structure of the system by finite element analysis. As a result, a newly designed plenum bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is changed in terms of bolting position, thickness, shape, and minimum weight increase. Finally, it is shown that a new design achieves a significant reduction of vibration of an intake manifold system and it is confirmed by tests on a running engine.

  • PDF

A Study on Static Situation Awareness System with the Aid of Optimized Polynomial Radial Basis Function Neural Networks (최적화된 pRBF 뉴럴 네트워크에 의한 정적 상황 인지 시스템에 관한 연구)

  • Oh, Sung-Kwun;Na, Hyun-Suk;Kim, Wook-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2352-2360
    • /
    • 2011
  • In this paper, we introduce a comprehensive design methodology of Radial Basis Function Neural Networks (RBFNN) that is based on mechanism of clustering and optimization algorithm. We can divide some clusters based on similarity of input dataset by using clustering algorithm. As a result, the number of clusters is equal to the number of nodes in the hidden layer. Moreover, the centers of each cluster are used into the centers of each receptive field in the hidden layer. In this study, we have applied Fuzzy-C Means(FCM) and K-Means(KM) clustering algorithm, respectively and compared between them. The weight connections of model are expanded into the type of polynomial functions such as linear and quadratic. In this reason, the output of model consists of relation between input and output. In order to get the optimal structure and better performance, Particle Swarm Optimization(PSO) is used. We can obtain optimized parameters such as both the number of clusters and the polynomial order of weights connection through structural optimization as well as the widths of receptive fields through parametric optimization. To evaluate the performance of proposed model, NXT equipment offered by National Instrument(NI) is exploited. The situation awareness system-related intelligent model was built up by the experimental dataset of distance information measured between object and diverse sensor such as sound sensor, light sensor, and ultrasonic sensor of NXT equipment.

Biomimetic Actuator and Sensor for Robot Hand (로봇 손용 인체모방형 구동기 및 센서)

  • Kim, Baek-Chul;Chung, Jinah;Cho, Hanjoung;Shin, Seunghoon;Lee, Hyongsuk;Moon, Hyungpil;Choi, Hyouk Ryeol;Koo, Jachoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1497-1502
    • /
    • 2012
  • To manufacture a robot hand that essentially mimics the functions of a human hand, it is necessary to develop flexible actuators and sensors. In this study, we propose the design, manufacture, and performance verification of flexible actuators and sensors based on Electro Active Polymer (EAP). EAP is fabricated as a type of film, and it moves with changes in the voltage because of contraction and expansion in the polymer film. Furthermore, if a force is applied to an EAP film, its thickness and effective area change, and therefore, the capacitance also changes. By using this mechanism, we produce capacitive actuators and sensors. In this study, we propose an EAP-based capacitive sensor and evaluate its use as a robot hand sensor.

A multi-radio sink node designed for wireless SHM applications

  • Yuan, Shenfang;Wang, Zilong;Qiu, Lei;Wang, Yang;Liu, Menglong
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.261-282
    • /
    • 2013
  • Structural health monitoring (SHM) is an application area of Wireless Sensor Networks (WSNs) which usually needs high data communication rate to transfer a large amount of monitoring data. Traditional sink node can only process data from one communication channel at the same time because of the single radio chip structure. The sink node constitutes a bottleneck for constructing a high data rate SHM application giving rise to a long data transfer time. Multi-channel communication has been proved to be an efficient method to improve the data throughput by enabling parallel transmissions among different frequency channels. This paper proposes an 8-radio integrated sink node design method based on Field Programmable Gate Array (FPGA) and the time synchronization mechanism for the multi-channel network based on the proposed sink node. Three experiments have been performed to evaluate the data transfer ability of the developed multi-radio sink node and the performance of the time synchronization mechanism. A high data throughput of 1020Kbps of the developed sink node has been proved by experiments using IEEE.805.15.4.

RESEARCH OF COMMUNICATION SCHEDULING BETWEEN COMPUTER I/O AND S/W FOR ACQUISITION OF SATELLITE SENSORED DATA

  • Koo, Cheol-Hea;Park, Su-Hyun;Kang, Soo-Yeon;Yang, Koon-Ho;Choi, Sung-Bong
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.196-199
    • /
    • 2006
  • Various communication mechanisms have been developed to acquire a meaningful data from sensors. The key requirement during the sensor data acquisition is determinism and reduction of time dependency. It is a fundermental level of satellite data management for controlling satellite operation software data acquisition from sensors or subsystem. Satellite operation software has various software modules to be operated in addition to data acquisition. Therefore, unnecessary time delay shall be minimized to perform the data acquisition. As the result, interrupt method might be prefered than polling method because the former can decrease the restriction of design during implementation of data acquisition logic. The possible problems while using interrupt method like as interrupt latency caused by delaying of interrupt processing time are analyzed. In this paper, communication mechanism which can be used to interface with satellite computer and subsidary subsystem by using interrupt is presented. As well, time dependency between software scheduling and data acquisition is analyzed.

  • PDF

In-process Truing of Metal-bonded Diamond Wheels for Electrolytic In-process Dressing (ELID) Grinding

  • Saleh, Tanveer;Biswas, Indraneel;Lim, Han-Seok;Rahman, Mustafizur
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.3-6
    • /
    • 2008
  • Electrolytic in-process dressing (ELID) grinding is a new technique for achieving a nanoscale surface finish on hard and brittle materials such as optical glass and ceramics. This process applies an electrochemical dressing on the metal-bonded diamond wheels to ensure constant protrusion of sharp cutting grits throughout the grinding cycle. In conventional ELID grinding, a constant source of pulsed DC power is supplied to the ELID cell, but a feedback mechanism is necessary to control the dressing power and obtain better performance. In this study, we propose a new closed-loop wheel dressing technique for grinding wheel truing that addresses the efficient correction of eccentric wheel rotation and the nonuniformity in the grinding wheel profile. The technique relies on an iterative control algorithm for the ELID power supply. An inductive sensor is used to measure the wheel profile based on the gap between the sensor head and wheel edge, and this is used as the feedback signal to control the pulse width of the power supply. We discuss the detailed mathematical design of the control algorithm and provide simulation results that were confirmed experimentally.

Design of Electronic Drum Using Computer Communication Based on Arduino (아두이노에 기반한 컴퓨터 통신을 이용한 전자드럼 설계)

  • Kim, Seungmin;Yang, Jisoo;Lee, Seungjae;Kim, Jung Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.489-491
    • /
    • 2013
  • In this paper, Electronic Drum based on Arduino and Processing language to communicate with a computer is implemented. First, we made a drum pad by using piezoelectric sensors. The drum pads prevent damage to the sensor and new mechanism was fabricated to mitigate the impact structure. Arduino connected to the pad, the sensor detects a signal when the shock sends it to Arduino. The received signal of Arduino sends a signal to the computer, and the signal received is stored in the computer to output sound of the drum. Through this structure, the micro-controller, the computer and communications technology can be combined and applicable to a many system.

  • PDF

A Study on the Clamping Force Estimation and Failsafe Control Algorithm Design of the Electronic Wedge Brake System (Electronic Wedge Brake 시스템의 클램핑력 추정 및 Failsafe 제어 알고리즘 설계에 관한 연구)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2016
  • The EWB(electronic wedge brake) is one in which the braking force is developed in a wedge and caliper system and applied to a disk and wedge mechanism. The advantage of the wedge structure is that it produces self-reinforcing effect and hence, utilizes minimal motor power, resulting in reduced gear and current. The extent of use of clamping force sensors and protection from failure of the EWB system directly depends on the level of vehicle mass production. This study investigated the mathematical equations, simulation modeling, and failsafe control algorithm for the clamping force sensor of the EWB and validated the simulations. As this EWB system modeling can be applied to motor inductance, resistance, screw inertia, stiffness, and wedge mass and angle, this study could improve the accuracy of simulation of the EWB. The simulation results demonstrated the braking force, motor speed, and current of the EWB system when the driver desired to the step and pulse the brake force inputs. Moreover, this paper demonstrated that the proposed failsafe control algorithm accurately detects faults in the clamping force sensor, if any.

Design, Analysis and Evaluation of A New Energy Conserving MAC Protocol for Wireless Sensor Networks

  • Lim, Sangsoon;Kang, Young-Myoung;Jeong, Jiwoong;Kim, Chong-Kwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3046-3060
    • /
    • 2012
  • Low power listening (LPL) MAC protocols based on duty-cycling mechanism have been studied extensively to achieve ultra low energy consumption in wireless sensor networks (WSNs). Especially, recent ACK-based LPL schemes such as X-MAC employ strobe preambles and an early ACK, and show fair performances in communications and energy efficiencies. However, the state-of-the-art ACK-based LPL scheme still suffers from collision problems due to the protocol incompleteness. These collision effects are not trivial and make WSNs unstable, aggravate energy consumptions. In this paper, we propose two novel schemes; (i) ${\tau}$-duration CCA to mitigate the collision problem in ACK-based LPL MAC protocols. (ii) Short Preamble Counter (SPC) to conserve more energy by reducing unnecessary overhearing. We demonstrate the performance improvement of our scheme via a mathematical analysis and real-time experiments. Both analysis and experimental results confirm that our proposed scheme saves energy by up to 36% compared to the naive ACK-based LPL MAC protocol thanks to ${\tau}$-duration CCA and SPC.