• Title/Summary/Keyword: Sensor Fusion System

Search Result 435, Processing Time 0.027 seconds

Development of Control System for Anti-Rolling Tank of Ships with Fault Detection Capability (고장진단 기능을 갖는 선박 횡동요 감요 장치 용 제어시스템 개발)

  • Won, Moon-Cheol;Ryu, Sang-Hyun;Choi, Kwang-Sik;Jung, Yun-Ho;Lew, Jae-Moon;Ji, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.64-71
    • /
    • 2010
  • This paper summarizes the development of an ART control system panel with a touch screen and sensors to measure the roll and roll rate of ships. The control system hardware consists of two micro-processors, analog and digital I/O circuits, various relay circuits, etc. Sensor fusion and moving cross algorithms are implemented to accurately estimate the roll angle and roll period. In addition, the control system adopts a fault detection algorithm to inform users of ART system faults. A touch screen in the control panel can display the ART system states and faults. The performance of the developed system was verified on real sea trials.

A Time Synchronization Scheme for Vision/IMU/OBD by GPS (GPS를 활용한 Vision/IMU/OBD 시각동기화 기법)

  • Lim, JoonHoo;Choi, Kwang Ho;Yoo, Won Jae;Kim, La Woo;Lee, Yu Dam;Lee, Hyung Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.3
    • /
    • pp.251-257
    • /
    • 2017
  • Recently, hybrid positioning system combining GPS, vision sensor, and inertial sensor has drawn many attentions to estimate accurate vehicle positions. Since accurate multi-sensor fusion requires efficient time synchronization, this paper proposes an efficient method to obtain time synchronized measurements of vision sensor, inertial sensor, and OBD device based on GPS time information. In the proposed method, the time and position information is obtained by the GPS receiver, the attitude information is obtained by the inertial sensor, and the speed information is obtained by the OBD device. The obtained time, position, speed, and attitude information is converted to the color information. The color information is inserted to several corner pixels of the corresponding image frame. An experiment was performed with real measurements to evaluate the feasibility of the proposed method.

Analysis of Efficient Health Data Transmission Methods based on the Fusion of WBAN and FANET (WBAN과 FANET 융합 기반의 효율적인 신체 데이터 전송 방법 분석)

  • Ha, Il-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.386-394
    • /
    • 2017
  • FANET is an ad hoc network formed among the unmanned aircraft in the three-dimensional space for data transfer. Most of the research on FANET application has focused on the use of the camera sensor mounted on the unmanned aircraft to collect data from the ground, and process and delivery of the data for a specific purpose. However, the research on the fusion of WBAN and FANET that collects the data of the human body and passes through the FANET has not been studied much until now. Therefore, in this study, we study the data transmission system that collects the human body data of people working in the areas that are vulnerable to communication difficulties and passes the collected data through the FANET. In particular we analyze the possible methods to transfer the emergency data of the body in the fusion network of WBAN and FANET and provide a data transfer model that can be transmitted most efficiently.

Network-based Distributed Approach for Implementation of an Unmanned Autonomous Forklift (무인 자율 주행 지게차 구현을 위한 네트워크 기반 분산 접근 방법)

  • Song, Young-Hun;Park, Jee-Hun;Lee, Kyung-Chang;Lee, Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.898-904
    • /
    • 2010
  • Unmanned autonomous forklifts have a great potential to enhance the productivity of material handling in various applications because these forklifts can pick up and deliver loads without an operator and any fixed guide. There are, however, many technical difficulties in developing such forklifts including localization, map building, sensor fusion, control and so on. Implementation, which is often neglected, is one of practical issues in developing such an autonomous device. This is because the system requires numerous sensors, actuators, and controllers that need to be connected with each other, and the number of connections grows very rapidly as the number of devices grows. Another requirement on the integration is that the system should allow changes in the system design so that modification and addition of system components can be accommodated without too much effort. This paper presents a network-based distributed approach where system components are connected to a shared CAN network, and control functions are divided into small tasks that are distributed over a number of microcontrollers with a limited computing capacity. This approach is successfully applied to develop an unmanned forklift.

Development of Gas Type Identification Deep-learning Model through Multimodal Method (멀티모달 방식을 통한 가스 종류 인식 딥러닝 모델 개발)

  • Seo Hee Ahn;Gyeong Yeong Kim;Dong Ju Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.12
    • /
    • pp.525-534
    • /
    • 2023
  • Gas leak detection system is a key to minimize the loss of life due to the explosiveness and toxicity of gas. Most of the leak detection systems detect by gas sensors or thermal imaging cameras. To improve the performance of gas leak detection system using single-modal methods, the paper propose multimodal approach to gas sensor data and thermal camera data in developing a gas type identification model. MultimodalGasData, a multimodal open-dataset, is used to compare the performance of the four models developed through multimodal approach to gas sensors and thermal cameras with existing models. As a result, 1D CNN and GasNet models show the highest performance of 96.3% and 96.4%. The performance of the combined early fusion model of 1D CNN and GasNet reached 99.3%, 3.3% higher than the existing model. We hoped that further damage caused by gas leaks can be minimized through the gas leak detection system proposed in the study.

Development of Small System for Mobile-Based Visible/NIR Animal Imaging (실험동물용 가시광선/근적외선 생체 이미징 소형 장비의 개발)

  • Eum, Nyeon-Sik;Park, Hee-Joon;Jung, Jin-Yong;Han, Jung-Hyun;Kim, Hyung-Kyung;Jang, Eun-Yoon;Lee, Suck-Jae;Kang, Byoung-Ho;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.270-275
    • /
    • 2012
  • In this study, we have developed a mobile-based visible/NIR(Near InfraRed) imaging equipment for the animal testing. This equipment can provide visible, NIR and merged image through the viewer program. Especially, merged image help researcher to understand visual messages at animal in-vivo test. Also, it is available to send real-time images through the smart phone. Researcher can communicate with another researcher who is a long distance away. Also, the equipment was made with portable small size to enable it to commercialize.

Development of Image-based Assistant Algorithm for Vehicle Positioning by Detecting Road Facilities

  • Jung, Jinwoo;Kwon, Jay Hyoun;Lee, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.5
    • /
    • pp.339-348
    • /
    • 2017
  • Due to recent improvements in computer processing speed and image processing technology, researches are being actively carried out to combine information from a camera with existing GNSS (Global Navigation Satellite System) and dead reckoning. In this study, the mathematical model based on SPR (Single Photo Resection) is derived for image-based assistant algorithm for vehicle positioning. Simulation test is performed to analyze factors affecting SPR. In addition, GNSS/on-board vehicle sensor/image based positioning algorithm is developed by combining image-based positioning algorithm with existing positioning algorithm. The performance of the integrated algorithm is evaluated by the actual driving test and landmark's position data, which is required to perform SPR, based on simulation. The precision of the horizontal position error is 1.79m in the case of the existing positioning algorithm, and that of the integrated positioning algorithm is 0.12m at the points where SPR is performed. In future research, it is necessary to develop an optimized algorithm based on the actual landmark's position data.

Design of Navigation Algorithm for Mobile Robot using Sensor fusion (센서 합성을 이용한 자율이동로봇의 주행 알고리즘 설계)

  • Kim Jung-Hoon;Kim young-Joong;Lim Myo-Teag
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.703-713
    • /
    • 2004
  • This paper presents the new obstacle avoidance method that is composed of vision and sonar sensors, also a navigation algorithm is proposed. Sonar sensors provide poor information because the angular resolution of each sonar sensor is not exact. So they are not suitable to detect relative direction of obstacles. In addition, it is not easy to detect the obstacle by vision sensors because of an image disturbance. In This paper, the new obstacle direction measurement method that is composed of sonar sensors for exact distance information and vision sensors for abundance information. The modified splitting/merging algorithm is proposed, and it is robuster for an image disturbance than the edge detecting algorithm, and it is efficient for grouping of the obstacle. In order to verify our proposed algorithm, we compare the proposed algorithm with the edge detecting algorithm via experiments. The direction of obstacle and the relative distance are used for the inputs of the fuzzy controller. We design the angular velocity controllers for obstacle avoidance and for navigation to center in corridor, respectively. In order to verify stability and effectiveness of our proposed method, it is apply to a vision and sonar based mobile robot navigation system.

Development of Surveillance Gateway system for Event Sensitivity Type using Sensor fusion-based M2M Technology (센서 융합기술을 활용한 M2M 기반의 이벤트 감응형 감시 게이트웨이 기반 시스템 개발)

  • Kim, Ju-Su;Park, Joon-Hoon;Lee, Chol-U;Oh, Ryum-Duck
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.107-108
    • /
    • 2014
  • 현재의 지능형 안전 및 유지관리 방법은 자연재해 및 시설물 사용성능 향상 등의 환경변화 대응에 아직 미흡하고, 기술역량도 부족하다. 국내의 시설물의 점검 및 관리 시스템은 대부분 수작업으로 이루어진다. 이러한 수동적인 관리는 시설물의 상태 변화에 실시간으로 대응하지 못함으로서 여러 사고를 초래하기도 한다. 하지만 사람이 일일이 검사하는 수동적인 시설물 관리에서는 이러한 문제점을 완벽히 해결할 수 없으며, 시설물 관리를 위해 많은 유지보수 인력이 필요하지만 예산상의 문제로 인해 관리가 미흡하다. 본 논문에서는 4G 무선네트워크 기반의 영상카메라 및 감지센서 융합형 시각정보화 M2M 게이트웨이를 활용하여 간단한 시설물 관리 시스템 구성으로 인한 기존 원격 영상 감시 시스템과 차별화된 저전력, 저비용, 고효율, 고성능의 무인 시설물 관리 시스템을 설계하였다.

  • PDF

Velocity and Position Estimation of UAVs Based on Sensor Fusion and Kalman Filter (센서퓨전과 칼만필터에 기반한 무인항고기의 속도와 위치 추정)

  • Kang, Hyun-Ho;Kim, Kwan-Soo;Lee, Sang-Su;You, Sung-Hyun;Lee, Dhong-Hun;Lee, Dong-Kyu;Kim, Young-Eun;Ahn, Choon-Ki
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.430-433
    • /
    • 2018
  • This paper proposes the Kalman filter (KF) with optical flow method to estimate the position and the velocity of unmanned aerial vehicles (UAVs) in the absence of global positioning system (GPS). A downward-looking camera, a gyroscope and an ultrasonic sensor are fused to compensate the measurement from optical-flow method. To overcome the problem of dealing with noise in onboard sensors, the KF is incorporated to efficiently predict the velocity and estimate the position. Basic mechanisms of optical flow and the KF are introduced and experiments are conducted to show how the techniques involved improve the estimations.