• Title/Summary/Keyword: Sensor FDI

Search Result 37, Processing Time 0.02 seconds

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Improved PCA method for sensor fault detection and isolation in a nuclear power plant

  • Li, Wei;Peng, Minjun;Wang, Qingzhong
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.146-154
    • /
    • 2019
  • An improved principal component analysis (PCA) method is applied for sensor fault detection and isolation (FDI) in a nuclear power plant (NPP) in this paper. Data pre-processing and false alarm reducing methods are combined with general PCA method to improve the model performance in practice. In data pre-processing, singular points and random fluctuations in the original data are eliminated with various techniques respectively. In fault detecting, a statistics-based method is proposed to reduce the false alarms of $T^2$ and Q statistics. Finally, the effects of the proposed data pre-processing and false alarm reducing techniques are evaluated with sensor measurements from a real NPP. They are proved to be greatly beneficial to the improvement on the reliability and stability of PCA model. Meanwhile various sensor faults are imposed to normal measurements to test the FDI ability of the PCA model. Simulation results show that the proposed PCA model presents favorable performance on the FDI of sensors no matter with major or small failures.

Model-Free Hybrid Fault Detection and Isolation For UAV Inertial Measurement Sensors (무인기 관성측정 센서의 비모델 복합 고장진단기법)

  • Kim, Seung-Keun;Kim, You-Dan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.200-206
    • /
    • 2005
  • In this paper, a redundancy management system for aircraft is studied, and FDI (Fault Detection and Isolation) algorithm of inertial sensor system is proposed. UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional FDI method cannot isolate multiple faults in a triple redundancy system. In this paper, hardware based FDI technique is proposed, which combines a parity equation approach with the wavelet based technique, which is a model-free FDI method. To verify the effectiveness of the proposed FDI method, numerical simulations are performed.

Estimation of State-of-charge and Sensor Fault Detection of a Lithium-ion Battery in Electric Vehicles (전기자동차용 리튬이온전지를 위한 SOC 추정 및 센서 고장검출)

  • Han, Man-You;Lee, Kee-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1085-1091
    • /
    • 2014
  • A model based SOC estimation scheme using parameter identification is described and applied to a Lithium-ion battery module that can be installed in electric vehicles. Simulation studies are performed to verify the effect of sensor faults on the SOC estimation results for terminal voltage sensor and load current sensor. The sensor faults should be detected and isolated as soon as possible because the SOC estimation error due to any sensor fault seriously affects the overall performance of the BMS. A new fault detection and isolation(FDI) scheme by which the fault of terminal voltage sensor and load current sensor can be detected and isolated is proposed to improve the reliability of the BMS. The proposed FDI scheme utilizes the parameter estimation of an input-output model and two fuzzy predictors for residual generation; one for terminal voltage and the other for load current. Recently developed dual polarization(DP) model is taken to develope and evaluate the performance of the proposed FDI scheme. Simulation results show the practical feasibility of the proposed FDI scheme.

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Hybrid Fault Detection and Isolation Method for Inertial Sensors Using Unscented Kalman Filter (Unscented 칼만필터를 이용한 관성센서 복합 고장검출기법)

  • Park, Sang-Kyun;Kim, You-Dan;Park, Chan-Guk;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.57-64
    • /
    • 2005
  • In two-degree of freedom(TDOF) inertial sensors, two axes are mechanically correlated with each other. Fault source of one axis sensor may affect the other axis sensor, and therefore multiple fault detection and isolation(FDI) technique is required. Conventional FDI techniques using hardware redundancy need four TDOF inertial sensors for FDI. In this study, three TDOF inertial sensor redudancy case is considered, where conventional FDI technique can detect the fault, but cannot isolate the fault sensor. Hybrid FDI technique is proposed to solve this problem. Hybrid FDI technique utilizes the analytic redundancy by utilizing the unscented kalman filter as well as hardware redundancy for FDI. To verify the effectiveness of the proposed FDI technique, numerical simulations are performed using six degree of freedom nonlinear aircrft dynamics.

FDI considering Two Faults of Inertial Sensors (관성센서의 이중 고장을 고려한 고장 검출 및 분리)

  • 김광훈;박찬국;이장규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • Inertial navigation system with hardware redundancy must use FDI(Fault Detection and Isolation) method to remove the influence of faulty sensors. Until now, several FDI methods such as PSA(Parity Space Approach), GLT(Generalized Likelihood ratio Test) and OPT(Optimal Parity vector Test) method are generally used. However, because these FDI methods only consider the situation that the system has one faulty sensor, these methods cannot be directly adapted for the system with two faulty sensors. To solve this problem, in this paper, PSA method is analyzed and based on this result, new FDI method called EPSA is proposed to consider a detection and an isolation of two faulty sensors in inertial navigation system.

Hybrid Fault Detection and Isolation Techniques for Aircraft Inertial Measurement Sensors

  • Kim, Seung-Keun;Jung, In-Sung;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.73-83
    • /
    • 2006
  • In this paper, a redundancy management system for aircraft is studied, and fault detection and isolation algorithms of inertial sensor system are proposed. Contrary to the conventional aircraft systems, UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional fault detection and isolation (FDI) method cannot isolate multiple faults in a triple redundancy system. In this paper, two FDI techniques are proposed. First, hardware based FDI technique is proposed, which combines a parity equation approach with a wavelet based technique. Second, analytic FDI technique based on the Kalman filter is proposed, which is a model-based FDI method utilizing the threshold value and the confirmation time. To provide the reference value for detecting the fault, residuals are calculated using the extended Kalman filter. To verify the effectiveness of the proposed FDI methods, numerical simulations are performed.

Satellite Fault Detection and Isolation Scheme with Modified Adaptive Fading EKF

  • Lim, Jun Kyu;Park, Chan Gook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1401-1410
    • /
    • 2014
  • This paper presents a modified adaptive fading EKF (AFEKF) for sensor fault detection and isolation in the satellite. Also, the fault detection and isolation (FDI) scheme is developed in three phases. In the first phase, the AFEKF is modified to increase sensor fault detection performance. The sensor fault detection and sensor selection method are proposed. In the second phase, the IMM filer with scalar penalty is designed to detect wherever actuator faults occur. In the third phase of the FDI scheme, the sub-IMM filter is designed to identify the fault type which is either the total or partial fault. An important feature of the proposed FDI scheme can decrease the number of filters for detecting sensor fault. Also, the proposed scheme can classify fault detection and isolation as well as fault type identification.

Sensor Fault-tolerant Controller Design on Gas Turbine Engine using Multiple Engine Models (다중 엔진모델을 이용한 센서 고장허용 가스터빈 엔진제어기 설계)

  • Kim, Jung Hoe;Lee, Sang Jeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.56-66
    • /
    • 2016
  • Robustness is essential for model based FDI (Fault Detection and Isolation) and it is inevitable to have modeling errors and sensor signal noises during the process of FDI. This study suggests an improved method by applying NARX (Nonlinear Auto Regressive eXogenous) model and Kalman estimator in order to cope with problems caused by linear model errors and sensor signal noises in the process of fault diagnoses. Fault decision is made by the probability of the trend of gradually accumulated errors applying Fuzzy logic, which are robust to instantaneous sensor signal noises. Reliability of fault diagnosis is verified under various fault simulations.