• 제목/요약/키워드: Sensitivity coefficient

검색결과 911건 처리시간 0.026초

프리스트레스트 콘크리트 교량의 크리프와 건조수축효과의 민감도 해석 (Sensitivity Analysis of Creep and Shrinkage Effects of Prestressed Concrete Bridges)

  • 오병환;양인환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표대회 논문집(III)
    • /
    • pp.656-661
    • /
    • 1998
  • This paper presents a method of statistical analysis and sensitivity analysis of creep and shrinkage effects in PSC box girder bridges. The statistical and sensitivity analyses are performed by using the numerical simulation of Latin Hypercube sampling. For each sample, the time-dependent structural analysis is performed to produce response data, which are then statistically analyzed. The probabilistic prediction of the confidence limits on long-term effects of creep and shrinkage is then expressed. Three measures are examined to quantify the sensitivity of the outputs to each of the input variables. These are rank correlation coefficient(RCC), partial rank correlation coefficient(PRCC) and standardized rank regression coefficient(SRRC) computed on the ranks of the observations. Probability band widens with time, which indicates an increase of prediction uncertainty with time. The creep model uncertainty factor and the relative humidity appear as the most dominant factors with regard to the model output uncertainty.

  • PDF

강성계수의 전달을 이용한 정적 감도해석 알고리즘에 관한 연구 (A Study on the Static Sensitivity Analysis Algorithm Using the Transfer of Stiffness Coefficient)

  • 최명수
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.82-89
    • /
    • 2001
  • To design a structural or a mechanical system with the best performance, the main procedure of a typical design usually consists of repeated modifications of design parameters and the investigation of the system response for each set of these parameters. But this procedure requires much time, effort and experience. Sensitivity analysis can provide systematic information for improving performance of a system. The author has studied on the development of the structural analysis algorithm and suggested recently the transfer stiffness coefficient method(TSCM). This method is very suitable algorithm to a personal computer because the concept of the TSCM is based on the transfer of the nodal stiffness coefficients which are related to force and displacement vectors at each node. In this paper, a new sensitivity analysis algorithm using the concept of the TSCM is formulated for the computation of state variable sensitivity in static problems. The trust of the proposed algorithm is confirmed through the comparison with the computation results using existent sensitivity analysis algorithm and reanalysis for computation models.

  • PDF

Wave Digital Filter의 설계 및 특성에 관한 연구 (On the Design and Properties of Wave Digital Filter)

  • 김인식;김정선
    • 한국통신학회:학술대회논문집
    • /
    • 한국통신학회 1983년도 추계학술발표회논문집
    • /
    • pp.56-60
    • /
    • 1983
  • There has been a great amount of interest in the design of digital filters with low sensitivity to coefficient variations. Especiaily the wave digital filter modeled after analog IC ladder filter has been studied to have low-cocfficient-sensitivity properties. This paper examined the design of the wave digital filter and how the sensitivity and roundoff noise porperty arises. As a result of computer simulation the implementation of the digital filter was possible with a lower coefficient word length comparing with the conventional cascade structure.

  • PDF

Uncertainty Assessment using Monte Carlo Simulation in Net Thrust Measurement at AETF

  • Lee, Bo-Hwa;Lee, Kyung-Jae;Yang, In-Young;Yang, Soo-Seok;Lee, Dae-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.126-131
    • /
    • 2007
  • In this paper, Monte Carlo Simulation (MCS) method was used as an uncertainty assessment tool for air flow, net thrust measurement. Uuncertainty sources of the net thrust measurement were analyzed, and the probability distribution characteristics of each source were discussed. Detailed MCS methodology was described including the effect of the number of simulation. Compared to the conventional sensitivity coefficient method, the MCS method has advantage in the uncertainty assessment. The MCS is comparatively simple, convenient and accurate, especially for complex or nonlinear measurement modeling equations. The uncertainty assessment result by MCS was compared with that of the conventional sensitivity coefficient method, and each method gave different result. The uncertainties in the net thrust measurement by the MCS and the conventional sensitivity coefficient method were 0.906% and 1.209%, respectively. It was concluded that the first order Taylor expansion in the conventional sensitivity coefficient method and the nonlinearity of model equation caused the difference. It was noted that the uncertainty assessment method should be selected carefully according to the mathematical characteristics of the model equation of the measurement.

토사 절토사면 안정성 영향인자의 민감도 분석 (Sensitivity Analyses of Influencing Factors on Stability in Soil Cut Slope)

  • 유남재;박병수;전상현;조한기
    • 산업기술연구
    • /
    • 제26권B호
    • /
    • pp.73-81
    • /
    • 2006
  • A sensitivity analysis about effects of influencing factors on the stability of Soil cut slope was performed. Slope stability analyses were carried out under dry, rainy and seismic conditions. Dominant factors controlling the slope stability were chosen such as cohesion and internal friction angle, unit weight of soil, water table and seismic horizontal coefficient used for the slope stability during earthquake. Parametric stability analysis with those factors was performed for sensitivity analysis. As results of analyzing the sensitivity of factors under dry and rainy conditions, effects of cohesion, internal friction angle and unit weight of soil on the stability of slope are more critical in the dry condition than in the rainy condition. Cohesion and internal friction angle are more dominant factors influencing the slope stability irrespective of dry or rainy conditions than unit weight of soil and the horizontal seismic coefficient. The unit weight and the horizontal seismic coefficient affects crucially the stability according to conditions of slope formation and dry or rainy seasons. For the effect of horizontal seismic coefficient on stability of slope, safety factor of slope is not affected significantly by dry or rainy conditions. However, increase of the horizontal seismic coefficient under the rainy condition floes reduce the safety factor significantly rather than the dry condition. Therefore, it is needed that the location of the water table is assigned appropriately to satisfy the required safety factor of stability in the case of checking slope stability for the rainy and seismic conditions.

  • PDF

강우조건이 ILLUDAS 모형 매개변수의 민감도에 미치는 영향 분석 (Sensitivity Analysis of ILLUDAS Model Parameters Based on Rainfall Conditions)

  • 이종태;김태화
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.748-757
    • /
    • 2004
  • In this study, we analyzed the sensitivity of parameters which affect the result of ILLUDAS model, in the various rainfall conditions. The three basins including Namgaja, Kings creek, Gray haven were selected for this research. The rainfall conditions are considered in terms of the rainfall frequency, the duration and the distribution. In most cases, the impermeability area ratio, the sewer slope, and the sewer roughness coefficient give more significant effects on the results than others. The results show that as increasing the rainfall frequency, the sensitivity of the parameters, sewer slope and roughness coefficient are rised, while the impermeability area ratio is decreasing. And also, for the duration of rainfall, the impermeability area ratio's sensitivity shows similar tendency. In case of the rainfall distribution, the parameters of the sewer roughness and the impermeability area ratio show more sensitive in Huff distribution. Especially, The impermeability area ratio is the most sensitive parameter in Central blocking and Yen & Chow distributions respectively.

Reliability sensitivity analysis of dropped object on submarine pipelines

  • Edmollaii, Sina Taghizadeh;Edalat, Pedram;Dyanati, Mojtaba
    • Ocean Systems Engineering
    • /
    • 제9권2호
    • /
    • pp.135-155
    • /
    • 2019
  • One of the safest and the most economical methods to transfer oil and gas is pipeline system. Prediction and prevention of pipeline failures during its assessed lifecycle has considerable importance. The dropped object is one of the accidental scenarios in the failure of the submarine pipelines. In this paper, using Monte Carlo Sampling, the probability of damage to a submarine pipeline due to a box-shaped dropped object has been calculated in terms of dropped object impact frequency and energy transfer according to the DNV-RP-F107. Finally, Reliability sensitivity analysis considering random variables is carried out to determine the effect intensity of each parameter on damage probability. It is concluded that impact area and drag coefficient have the highest sensitivity and mass and add mass coefficient have the lowest sensitivity on probability of failure.

파이프 프루버의 측정불확도에 관한 연구 (A Study on the Measurement Uncertainty of Pipe Prover)

  • 임기원
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1388-1398
    • /
    • 2000
  • A pipe prover is a flowmeter calibrator used in flow measurement field. Gravimetric and volumetric methods were applied to determine the basic volume of the pipe prover. Uncertainty of its basic volume measurement was evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainty of determining the basic volume was estimated from the sensitivity coefficient and the standard uncertainty of independent variables. It was found that the uncertainties of the weighing and volume measurements have dominant influence on that of the basic volume determination. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of the basic volume is shown clearly.

유량계 교정장치의 측정불확도에 관한 연구 (A Study on the Measurement Uncertainty of Flowmeter Calibrator)

  • 임기원
    • 대한기계학회논문집B
    • /
    • 제25권4호
    • /
    • pp.561-571
    • /
    • 2001
  • The standard uncertainty of flowrate measurement is obtained by combining that of independent variables. Gravimetric and volumetric method were applied to determine the flowrate and the standard uncertainties of flowrate measurement by both methods were evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainties of determining the flowrate were estimated from the sensitivity coefficient and the standard uncertainty of independent variables. For practical application, the methods for evaluating and expressing uncertainty in flow measurement were discussed. It was found that the uncertainties of the weighing and time measurement in gravimetric method, the volume and time measurement in volumetric method have dominant influence on that of flowrate measurement. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of flowrate measurement is shown clearly.

금속박막형 압력센서의 제작 (Fabrication of Metal Thin-Film Type Pressure Sensors)

  • 최성규;김병태;남효덕;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.587-590
    • /
    • 2000
  • This paper presents the characteristics of metal thin-film pressure sensors. The micro pressure sensors consists of a chrom thin-film, patterned on a Wheatstone bridge configuration, sputter-deposited onto thermally oxidized Si wafer an aluminium interconnection layer. The fabricated micro pressure sensors shows a low temperature coefficient of resistance, high-sensitivity, low non-linearity and excellent temperature stability. The sensitivity is 1.16~1.21 mV/V.kgf/$\textrm{cm}^2$ in the temperature range of 25~l0$0^{\circ}C$ and the maximum non-linearity is 0.21 %FS.

  • PDF