• 제목/요약/키워드: Sensitivity coefficient

검색결과 917건 처리시간 0.026초

Sensitivity of quantitative symmetry measurement algorithms for convergent beam electron diffraction technique

  • Hyeongsub So;Ro Woon Lee;Sung Taek Hong;Kyou-Hyun Kim
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.10.1-10.9
    • /
    • 2021
  • We investigate the sensitivity of symmetry quantification algorithms based on the profile R-factor (Rp) and the normalized cross-correlation (NCC) coefficient (γ). A DM (Digital Micrograph©) script embedded in the Gatan digital microscopy software is used to develop the symmetry quantification program. Using the Bloch method, a variety of CBED patterns are simulated and used to investigate the sensitivity of symmetry quantification algorithms. The quantification results show that two symmetry quantification coefficients are significantly sensitive to structural changes even for small strain values of < 1%.

Effects of Aerosol Hygroscopicity on Fine Particle Mass Concentration and Light Extinction Coefficient at Seoul and Gosan in Korea

  • Choi, Eun-Kyung;Kim, Yong-Pyo
    • Asian Journal of Atmospheric Environment
    • /
    • 제4권1호
    • /
    • pp.55-61
    • /
    • 2010
  • The sensitivity of aerosol light extinction coefficient to the aerosol chemical composition change is estimated by (1) calculating the aerosol water content and chemical concentrations by a gas/particle equilibrium model and (2) calculating the aerosol light extinction coefficient by a Mie theory based optical model. The major chemical species are total (gas and particle phase) sulfuric acid, total nitric acid, and total ammonia which are based on the measurement data at Seoul and Gosan. At Seoul, since there were enough ammonia to neutralize both total sulfuric acid and total nitric acid, the dry ionic concentration is most sensitive to the variation of the total nitric acid level, while the total mass concentration (ionic concentration plus water content) and thus, the aerosol light extinction coefficient are primarily determined by the total sulfuric acid. At Gosan, since the concentration of ambient sulfuric acid was the highest among the inorganic species, sulfate salts determined aerosol hygroscopicity. Thus, both ionic and total mass concentration, and resultant aerosol light extinction coefficient are primarily determined by the sulfuric acid level.

인장 물성 측정 불확도 평가 (Estimation of Measurement Uncertainty in Evaluation of Tensile Properties)

  • 허용학;이해무;김동진;박종서
    • 대한기계학회논문집A
    • /
    • 제34권1호
    • /
    • pp.73-78
    • /
    • 2010
  • 재료의 인장 물성 측정 불확도 평가가 수행되었다. 인장 물성 측정에 영향을 주는 불확도의 요인이 구분되어 분석되었고 인장 시험으로부터 측정되는 측정량, 즉 탄성계수, 항복 강도 그리고 인장 강도의 불확도 평가 모델이 본 연구에서 제시되었고 각 측정량에 대한 대응하는 수학적 모델과 측정치로부터 각 측정치의 감도계수를 계산함으로서 유도 되었다. 각 모델에 근거하여 ISO 6892에 따라 결정되는 SUS316LN의 실험적 데이터로부터 인장 물성의 불확도가 평가되었다.

엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석 (Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test)

  • 양인영
    • 한국유체기계학회 논문집
    • /
    • 제14권1호
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

Development of Analytical Technology Using the HS-SPME-GC/FID for Monitoring Aromatic Solvents in Urine

  • Lee, Mi-Young;Chung, Yun Kyung;Shin, Kyong-Sok
    • Mass Spectrometry Letters
    • /
    • 제4권1호
    • /
    • pp.18-20
    • /
    • 2013
  • Headspace solid phase micro-extraction gas chromatography/flame ionization detection (HS-SPME-GC/FID) method was compared with headspace gas chromatography/mass selective detection (HS-GC/MS). Organic solvent-spiked urine as well as urine samples from workspace was analyzed under optimal condition of each method. Detection limit of each compound by HS-SPME-GC/FID was $3.4-9.5{\mu}g/L$, which enabled trace analysis of organic solvents in urine. Linear range of each organic solvent was $10-400{\mu}g/L$, with fair correlation coefficient between 0.992 and 0.999. The detection sensitivity was 4 times better than HS-GC/MS in selected ion monitoring (SIM) mode. Accuracy and precision was confirmed using commercial reference material, with accuracy around 90% and precision less than 4.6% of coefficient of variance. Among 48 urine samples from workplace, toluene was detected from 45 samples in the range of $20-324{\mu}g/L$, but no other solvents were found. As a method for trace analysis, SPME HS GC/FID showed high sensitivity for biological monitoring of organic solvent in urine.

Non-linear incidental dynamics of frame structures

  • Radoicic, Goran N.;Jovanovic, Miomir Lj.;Marinkovic, Dragan Z.
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1193-1208
    • /
    • 2014
  • A simulation of failures on responsible elements is only one form of the extreme structural behavior analysis. By understanding the dynamic behavior in incidental situations, it is possible to make a special structural design from the point of the largest axial force, stress and redundancy. The numerical realization of one such simulation analysis was performed using FEM in this paper. The boundary parameters of transient analysis, such as overall structural damping coefficient, load accelerations, time of load fall and internal forces in the responsible structural elements, were determined on the basis of the dynamic experimental parameters. The structure eigenfrequencies were determined in modal analysis. In the study, the basic incidental models were set. The models were identified by many years of monitoring incidental situations and the most frequent human errors in work with heavy structures. The combined load models of structure are defined in the paper since the incidents simply arise as consequences of cumulative errors and failures. A feature of a combined model is that the single incident causes the next incident (consecutive timing) as well as that other simple dynamic actions are simultaneous. The structure was observed in three typical load positions taken from the crane passport (range-load). The obtained dynamic responses indicate the degree of structural sensitivity depending on the character of incident. The dynamic coefficient KD was adopted as a parameter for the evaluation of structural sensitivity.

Pseudo-static stability analysis of wedges based on the nonlinear Barton-Bandis failure criterion

  • Zhao, Lianheng;Jiao, Kangfu;Zuo, Shi;Yu, Chenghao;Tang, Gaopeng
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.287-297
    • /
    • 2020
  • This paper investigates the stability of a three-dimensional (3D) wedge under the pseudo-static action of an earthquake based on the nonlinear Barton-Bandis (B-B) failure criterion. The influences of the mechanical parameters of the discontinuity surface, the geometric parameters of the wedge and the pseudo-static parameters of the earthquake on the stability of the wedge are analyzed, as well as the sensitivity of these parameters. Moreover, a stereographic projection is used to evaluate the influence of pseudo-static direction on instability mode. The parametric analyses show that the stability coefficient and the instability mode of the wedge depend on the mechanical parameter of the rock mass, the geometric form of the wedge and the pseudo-static state of the earthquake. The friction angle of the rock φb, the roughness coefficient of the structure surface JRC and the two angles related to strikes of the joints θ1 and θ2 are sensitive to stability. Furthermore, the sensitivity of wedge height h, the compressive strength of the rock at the fracture surface JCS and the slope angle α to the stability are insignificant.

오염부하량 할당에 있어서 다목적 유전알고리즘의 적용 방법에 관한 연구 (Application of multi-objective genetic algorithm for waste load allocation in a river basin)

  • 조재현
    • 환경영향평가
    • /
    • 제22권6호
    • /
    • pp.713-724
    • /
    • 2013
  • In terms of waste load allocation, inequality of waste load discharge must be considered as well as economic aspects such as minimization of waste load abatement. The inequality of waste load discharge between areas was calculated with Gini coefficient and was included as one of the objective functions of the multi-objective waste load allocation. In the past, multi-objective functions were usually weighted and then transformed into a single objective optimization problem. Recently, however, due to the difficulties of applying weighting factors, multi-objective genetic algorithms (GA) that require only one execution for optimization is being developed. This study analyzes multi-objective waste load allocation using NSGA-II-aJG that applies Pareto-dominance theory and it's adaptation of jumping gene. A sensitivity analysis was conducted for the parameters that have significant influence on the solution of multi-objective GA such as population size, crossover probability, mutation probability, length of chromosome, jumping gene probability. Among the five aforementioned parameters, mutation probability turned out to be the most sensitive parameter towards the objective function of minimization of waste load abatement. Spacing and maximum spread are indexes that show the distribution and range of optimum solution, and these two values were the optimum or near optimal values for the selected parameter values to minimize waste load abatement.

동특성 변화를 이용한 감쇠 구조물의 손상예측 (Prediction of the Damage in the Structure with Damping Using the Modified Dynamic Characteristics)

  • 이정윤
    • 한국소음진동공학회논문집
    • /
    • 제22권11호
    • /
    • pp.1144-1151
    • /
    • 2012
  • A damage in structure alters its dynamic characteristics. The change is characterized by changes in the modal parameter, i.e., modal frequencies, modal damping value and mode shape associated with each modal frequency. Changes also occur in some of the structural parameters; namely, the mass, damping, stiffness matrices of the structure. In this paper, evaluation of changes in stiffness matrix of a structure is presented as a method not only for identifying the presence of the damage but also locating the damage. It is shown that changed stiffness matrix can be accurately estimated a sensitivity coefficient matrix derived from modifying mode shapes, First, with 4 story shear structure models, the effect of presence of damage in a structure on its stiffness matrix is studied. By using these analytical model, the effectiveness of using change of stiffness matrix in detecting and locating damages is demonstrated. To validate the predicted changing stiffness and its location, the obtained results are compared to the reanalysis result which shows good agreement.

비정질 셀레늄 기반의 X선 검출 센서의 전하 수송 특성 (Charge Transport Characteristics of a-Se based X-ray Detector)

  • 강상식;차병열;장기원;김재형;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.375-378
    • /
    • 2002
  • There has recently been a great deal of interest in amorphous selenium for application of digital x-ray image sensor. The initial number of the electron-hole induced by interaction a-Se with x-ray photons and the collection efficiency to surface of generated charges are important parameters for x-ray sensitivity of the a-Se. Therefore, in this paper, we analyzed that thickness of a-Se film and electric field is affected on the initial number of electron-hole and the collection efficiency. The experimental value of x-ray induced charge about the various thickness and the electric field is compared with estimated absorbed energy through MCNP 4C code to analyze the mechanism x-ray induced signal of a-Se. The experimental results showed that the electric field depends on initial escape coefficient and the thickness depends on collection coefficient than escape efficient.

  • PDF