• Title/Summary/Keyword: Sensitivity coefficient

Search Result 916, Processing Time 0.032 seconds

Important Radionuclides and Their Sensitivity for Ground water Pathway of a Hypothetical Near-Surface Disposal Facility

  • Park, J. W.;K. Chang;Kim, C. L.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • A radiological safety assessment was performed for a hypothetical near-surface radioactive waste repository as a simple screening calculation to identify important nuclides and to provide insights on the data needs for a successful demonstration of compliance. Individual effective doses were calculated for a conservative ground water pathway scenario considering well drilling near the site boundary. Sensitivity of resulting ingestion dose to input parameter values was also analyzed using Monte Carlo sampling. Considering peak dose rate and assessment time scale, C-14 and T-129 were identified as important nuclides and U-235 and U-238 as potentially important nuclides. For C-14, the dose was most sensitive to Darcy velocity in aquifer The distribution coefficient showed high degree of sensitivity for I-129 release.

  • PDF

A new consideration for the heat transfer coefficient and an analysis of the thermal stress of the high-interim pressure turbine casing model (열전달계수에 대한 새로운 고찰 및 고-중압 터빈 케이싱 모형의 열응력 해석)

  • Um, Dall-Sun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.425-429
    • /
    • 2004
  • In real design of the high & interim pressure turbine casing, it is one of the important things to figure out its thermal strain exactly. In this paper, with the establishment of the new concept for the heat transfer coefficient of steam that is one of the factors in analysis of the thermal stress for turbine casing, an analysis was done for one of the high & interim pressure turbine casings in operating domestically. The sensitivity analysis of the heat transfer coefficient of steam to the thermal strain of the turbine casing was done with a 2-D simple model. The analysis was also done with switching of the material properties of the turbine casing and resulted in that the thermal strain of the turbine casing was not so sensitive to the heat transfer coefficient of steam. On the basis of this, 3-D analysis of the thermal strain for the high and interim pressure turbine casing was done.

  • PDF

Experimental Study on Frictional Characteristics of Sheet Metal Forming (박판성형 마찰특성의 실험적 연구)

  • 금영탁;이봉현;차지혜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.54-57
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction tests of various sheets were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extreme1y low or high, the friction coefficient is high. As punch comer radius and punch speed are bigger, the value of friction coefficient is smaller. The sensitivity of friction coefficient is mainly governed by lubricant viscosity and sheet surface roughness.

  • PDF

Analysis of a Structural Damage Detection using the Change of Dynamic Characteristics (동특성 변화를 이용한 구조물의 손상 탐지 해석)

  • 이정윤;이정우;이준호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.760-763
    • /
    • 2003
  • This study proposed the analysis of damage defection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The method is applied to examples of a cantilever and 3 degree of freedom by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

  • PDF

Sensitivity improvement of fiber-optic gyroscope with erbium-doped fiber source by source excess noise subtraction (Erbium 첨가 광섬유 광원을 사용하는 자이로스코프에서 광원 과잉잡음 소거에 의한 측정감도 개선)

  • 진영준
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.226-227
    • /
    • 1999
  • In the fiber-optic gyroscope employing the erbium-doped fiber source, the source excess noise was subtracted through a signal processing to improve the gyroscope sensitivity . As the result, we obtained the improvement of 14 dB(electrical) at the proper frequency, which was measured from the noise floor spectrum . In addition the random walk coefficient in the gyro output was reduced by about factor of three.

  • PDF

Study on the new approaching method to determine limit of detection by gas chromatography (GC에서 검출한계 결정을 위한 새로운 접근 방법에 대한 연구)

  • Oh, Doe-Suk;Shin, Kyoung-Ae;Lee, Ji-A;Lym, Jong-Ho;Shin, Mi-Sun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.217-224
    • /
    • 2010
  • The purity methods to determine LOD/LOQ using standard deviation of the residual, intercept and blank by IUPAC and ACS describe many of the pitfalls and pose significant challenges to analytical chemists. Therefore, the aim of this study is the development of the simple, easy, convenient and statistically significant method to determine LOD in quantitative analysis of organic solvents by GC. The new approaching method by linearization in the given concentration range used coefficient of variation ; ${\sigma}_{n-1}$/S(standard deviation, ${\sigma}_{n-1}$ and average, S) of sensitivity(Response/concentration). The comparison of results among the purity methods(IUPAC and ACS) and the linearization have been fulfilled the F-test for standard deviations and t-test for LOD range values. The results of F-test and t-test are satisfied within 95 % confidence level, respectably. The LOD values determined by the new procedure are n-Hexane 0.0116 mg/$m^3$, Toluene 0.0807 mg/$m^3$, and o-Xylene 0.0494 mg/$m^3$. Because the standard deviation of the residual, intercept and blank and the slope of calibration curve are not calculated and the new approaching method use the coefficient of variation of sensitivity by linearization, this new method is simple, easy, convenient and statistically significant. In future, many chemical analysts will expect to applicate and routinely use this method in the all quantitative analysis.

Effects of the design variables and their constraints on the stage performance of an axial flow turbine (축류 터빈의 설계 변수 및 설계 변수의 제한조건이 성능에 미치는 영향)

  • 박호동;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2109-2124
    • /
    • 1991
  • A simulation program is developed to analyse the performance of an axial flow turbine stage based on the meanline prediction method. The gradient projection method is utilized to minimize the aerodynamic losses under the specified constraints on such as flow coefficient, total pressure ratio, stage power and blade loading coefficient. After obtaining the optimum point for minimizing the stage loss, a sensitivity analysis is carried out ground the optimum point to find the effects of the design variables and the design constraints on the stage performance. The result of the senitivity analysis under a constant blade loading coefficient shows that the total loss is more sensitive to the mean diameter, the absolute flow angle at nozzle outlet, the relative flow angle at rotor outlet and the axial mean velocity compared to the chords and the pitches. Moreover, the design constraints on the degree of reaction at root and the blade length-to-diameter ratio are found to be most influencial on the maximization of the overall aerodynamic efficiency.

Long-term monitoring of ground anchor tensile forces by FBG sensors embedded tendon

  • Sung, Hyun-Jong;Do, Tan Manh;Kim, Jae-Min;Kim, Young-Sang
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.269-277
    • /
    • 2017
  • Recently, there has been significant interest in structural health monitoring for civil engineering applications. In this research, a specially designed tendon, proposed by embedding FBG sensors into the center king cable of a 7-wire strand tendon, was applied for long-term health monitoring of tensile forces on a ground anchor. To make temperature independent sensors, the effective temperature compensation of FBG sensors must be considered. The temperature sensitivity coefficient ${\beta}^{\prime}$ of the FBG sensors embedded tendon was successfully determined to be $2.0{\times}10^{-5}^{\circ}C^{-1}$ through calibrated tests in both a model rock body and a laboratory heat chamber. Furthermore, the obtained result for ${\beta}^{\prime}$ was formally verified through the ground temperature measurement test, expectedly. As a result, the ground temperature measured by a thermometer showed good agreement compared to that measured by the proposed FBG sensor, which was calibrated considering to the temperature sensitivity coefficient ${\beta}^{\prime}$. Finally, four prototype ground anchors including two tension ground anchors and two compression ground anchors made by replacing a tendon with the proposed smart tendon were installed into an actual slope at the Yeosu site. Tensile forces, after temperature compensation was taken into account using the verified temperature sensitivity coefficient ${\beta}^{\prime}$ and ground temperature obtained from the Korean Meteorological Administration (KMA) have been monitored for over one year, and the results were very consistent to those measured from the load cell, interestingly.

Reliability and Validity of the Alcohol Use Disorders Identification Test - Consumption in Screening for Adults with Alcohol Use Disorders and Risky Drinking In Japan

  • Osaki, Yoneatsu;Ino, Aro;Matsushita, Sachio;Higuchi, Susumu;Kondo, Yoko;Kinjo, Aya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6571-6574
    • /
    • 2014
  • Background: Alcohol is well established as a risk factor for cancer development in many organ sites. To assess the reliability and validity of the Alcohol Use Disorders Identification Test - Consumption (AUDIT-C) for detecting alcohol use disorders or risky drinking in Japanese adults the present study was conducted. Materials and Methods: A test-retest method was applied with a 2-week interval with 113 health care employees. The k coefficient, Cronbach's coefficient alpha, Spearman's correlation coefficient, and intraclass correlation coefficient (ICC) were determined and the validity of the AUDIT-C was analyzed using the data from a nationwide survey on adult alcohol use conducted in 2008 (n=4,123). Results: The reliability of the AUDIT-C score was high (${\kappa}$ coefficient=0.63, Cronbach's alpha=0.98, correlation coefficient=0.95, and ICC=0.95). According to the likelihood ratio and Youden index, appropriate cutoffs for the AUDIT-C were ${\geq}5points$ in men and ${\geq}4$ points in women. The sensitivity and specificity of these cutoffs for identifying ${\geq}8$ points on the AUDIT were 0.88 and 0.80, respectively, for men (positive likelihood ratio [LR+]=4.5) and 0.96 and 0.87, respectively, for women (LR+=7.7). The sensitivity and specificity of the cutoffs for identifying ${\geq}12$ points on the AUDIT were 0.90 and 0.84, respectively, for men (LR+=5.8) and 0.93 and 0.94, respectively, for women (LR+=15.8). The sensitivity and specificity of the cutoffs for identifying ${\geq}16$ points on the AUDIT were 0.93 and 0.80, respectively, for men (LR+=4.7) and 0.92 and 0.98, respectively, for women (LR+=55.6). With higher scores on the AUDIT, the specificity decreased and false-positives increased. The appropriate cutoffs for identifying risky drinking were the same for both genders. Conclusions: The reliability and validity of the AUDIT-C are high, indicating that it is useful for identifying alcohol use disorders or risky drinking among the general population in Japan, a group at high risk of cancer development.

Sensitivity Analysis of Shear Strength Parameters($C, _{\Phi}$)and Slope Angel in Slope Stability Analysis (사면 안정해석에 적용되는 지반강도정수($C, _{\Phi}$)와 사면경사 민감도 분석)

  • Baek, Yong;Bae, Gyu-Jin;Kwon, O-Il;Jang, Su-Ho;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.179-184
    • /
    • 2005
  • Shear strength parameters obtained from filed survey are important factors in the analysis of slope stability. In this study, sensitivity analysis was performed to evaluate the effect of input parameters on the analysis of slope stability. The input parameters selected for sensitivity analysis were slope angle, cohesion, and friction angle. Monte-Carlo Simulation method was used for calculating input parameters and the factor of safety was computed by means of limit equilibrium method. A rock slope, which has failed in the field, was used for the sensitivity analysis in the analysis of slope stability. The result of analysis shows that the factor of safety of the rock slope was a little low. From partial correlation coefficient(PPC) of input parameters determined from the sensitivity analysis, slope stability was dependant on cohesion and slope angle. The effect of friction angle was lower than that of cohesion and slope angle on slope stability.

  • PDF