• Title/Summary/Keyword: Sensitivity algorithm

Search Result 1,044, Processing Time 0.03 seconds

Analysis of Microwave Inverse Scattering Using the Broadband Electromagnetic waves (광대역 전자파를 이용한 역산란 해석 연구)

  • Lee, Jung-Hoon;Chung, Young-Seek
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.169-174
    • /
    • 2005
  • In this paper, we proposed a new algorithm of the inverse scattering for the reconstruction of unknown dielectric scatterers using the finite-difference time-domain method and the design sensitivity analysis. We introduced the design sensitivity analysis based on the gradient for the fast convergence of the reconstruction. By introducing the adjoint variable method for the efficient calculation, we derived the adjoint variable equation. As an optimal algorithm we used the steepest descent method and reconstructed the dielectric targets using the iterative estimation. To verify our algorithm we will show the numerical examples for the two-dimensional $TM^2$ cases.

  • PDF

Global sensitivity analysis improvement of rotor-bearing system based on the Genetic Based Latine Hypercube Sampling (GBLHS) method

  • Fatehi, Mohammad Reza;Ghanbarzadeh, Afshin;Moradi, Shapour;Hajnayeb, Ali
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.549-561
    • /
    • 2018
  • Sobol method is applied as a powerful variance decomposition technique in the field of global sensitivity analysis (GSA). The paper is devoted to increase convergence speed of the extracted Sobol indices using a new proposed sampling technique called genetic based Latine hypercube sampling (GBLHS). This technique is indeed an improved version of restricted Latine hypercube sampling (LHS) and the optimization algorithm is inspired from genetic algorithm in a new approach. The new approach is based on the optimization of minimax value of LHS arrays using manipulation of array indices as chromosomes in genetic algorithm. The improved Sobol method is implemented to perform factor prioritization and fixing of an uncertain comprehensive high speed rotor-bearing system. The finite element method is employed for rotor-bearing modeling by considering Eshleman-Eubanks assumption and interaction of axial force on the rotor whirling behavior. The performance of the GBLHS technique are compared with the Monte Carlo Simulation (MCS), LHS and Optimized LHS (Minimax. criteria). Comparison of the GBLHS with other techniques demonstrates its capability for increasing convergence speed of the sensitivity indices and improving computational time of the GSA.

Design of Tower Damper Gain Scheduling Algorithm for Wind Turbine Tower Load Reduction (풍력터빈 타워 하중 저감을 위한 타워 댐퍼 게인 스케줄링 알고리즘 설계)

  • Kim, Cheol-Jim;Kim, Kwan-Su;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • This paper deals with the NREL (National Renewable Energy Laboratory) 5-MW reference wind turbine. The controller which include MPPT (Maximum power point tracking) control algorithm and tower load reduction control algorithm was designed by MATLAB Simulink. This paper propose a tower damper algorithm to improve the existing tower damper algorithm. To improve the existing tower damper algorithm, proposed tower damper algorithm were applied the thrust sensitivity scheduling and PI control method. The thrust sensitivity scheduling was calculated by thrust force formula which include thrust coefficient table. Power and Tower root moment DEL (Damage Equivalent Load) was set as a performance index to verify the load reduction algorithm. The simulation were performed 600 seconds under the wind conditions of the NTM (Normal Turbulence Model), TI (Turbulence Intensity)16% and 12~25m/s average wind speed. The effect of the proposed tower damper algorithm is confirmed through PSD (Power Spectral Density). The proposed tower damper algorithm reduces the fore-aft moment DEL of the tower up to 6% than the existing tower damper algorithm.

A Study on the Detection of the Ventricular Fibrillation based on Wavelet Transform and Artificial Neural Network (웨이브렛과 신경망 기반의 심실 세동 검출 알고리즘에 관한 연구)

  • Song Mi-Hye;Park Ho-Dong;Lee Kyoung-Joung;Park Kwang-Li
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.11
    • /
    • pp.780-785
    • /
    • 2004
  • In this paper, we proposed a ventricular fibrillation detection algorithm based on wavelet transform and artificial neural network. we selected RR intervals, the 6th and 7th wavelet coefficients(D6, D7) as features for classifying ventricular fibrillation. To evaluate the performance of the proposed algorithm, we compared the result of the proposed algorithm with that of fuzzy inference and fuzzy-neural network. MIT-BIH Arrhythmia database, Creighton University Ventricular Tachyarrhythmia database and MIH-BIH Malignant Ventricular Arrhythmia database were used as test and learning data. Among the algorithms, the proposed algorithm showed that the classification rate of normal and abnormal beat was sensitivity(%) of 96.10 and predictive positive value(%) of 99.07, and that of ventricular fibrillation was sensitivity(%) of 99.45. Finally. the proposed algorithm showed good performance compared to two other methods.

Study on sensitivities of generalized RRI method for data analysis of CSAMT survey (인공전류원 MT탐사 자료해석을 위한 GRRI법의 감도해석에 관한 연구)

  • Kim, Hee-Joon;Park, Mi-Kyung;Seol, Soon-Jee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.281-286
    • /
    • 2005
  • This paper presents sensitivity analysis of generalized rapid relaxation inversion (GRRI) algorithm for inverting controlled-source audio-frequency magnetotelluric (CSAMT) data. The algorithm was originally developed by modifying the RRI algorithm to recover a two-dimensional (2-D) conductivity structure of the Earth from MT data, but can be extended to include CSAMT data if it is combined with 2.5-D forward modeling. These GRRI approximate sensitivities are validated by comparison with exact 1-D and 2.5-D sensitivities. The comparison shows that the GRRI sensitivity is a good approximation to the exact sensitivity and has about half magnitude of the RRI sensitivity. Although the magnitude of the GRRI sensitivity is still slightly larger than that of the 2.5-D sensitivity, both sensitivities are broadly similar in shape when source-receiver offsets are greater than one skin depth on the Earth.

  • PDF

A Pacemaker AutoSense Algorithm with Dual Thresholds

  • Kim, Jung-Kuk;Huh, Woong
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.6
    • /
    • pp.477-484
    • /
    • 2002
  • A pacemaker autosense algorithm with dual thresholds. one for noise or tachyarrhythmia detection (noise threshold, NT) and the other for intrinsic beat detection (sensing threshold. ST), was developed to improve the sensing performance in single pass VDD electrograms. unipolar electrograms, or atrial fibrillation detection. When a deflection in an electrogram exceeds the NT (defined as 50% of 57), the autosense algorithm with dual thresholds checks if the deflection also exceeds the ST. If it does, the autosense algorithm calculates the signal to noise ratio (SNR) of the deflection to the highest deflection detected by NT but lower than ST during the last cardiac cycle. If the SNR 2, the autosense algorithm declares an intrinsic beat detection and calculates the next ST based on the three most recent intrinsic peaks. If the SNR $\geq$2, the autosense algorithm checks the number of deflections detected by NT during the last cardiac cycle in order to determine if it is a noise detection or tachyarrhythmia detection. Usually the autosense algorithm tries to set the 57 at 37.5% of the average of the three intrinsic beats, although it changes the percentage according to event classifications. The autosense algorithm was tested through computer simulation of atrial electrograms from 5 patients obtained during EP study, to simulate a worst sensing situation. The result showed that the ST levels for autosense algorithm tracked the electrogram amplitudes properly, providing more noise immunity whenever necessary. Also, the autosense algorithm with dual thresholds achieved sensing performance as good as the conventional fixed sensitivity method that was optimized retrospectively.

Diagnostic Performance of a New Convolutional Neural Network Algorithm for Detecting Developmental Dysplasia of the Hip on Anteroposterior Radiographs

  • Hyoung Suk Park;Kiwan Jeon;Yeon Jin Cho;Se Woo Kim;Seul Bi Lee;Gayoung Choi;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon;Woo Sun Kim;Young Jin Ryu;Jae-Yeon Hwang
    • Korean Journal of Radiology
    • /
    • v.22 no.4
    • /
    • pp.612-623
    • /
    • 2021
  • Objective: To evaluate the diagnostic performance of a deep learning algorithm for the automated detection of developmental dysplasia of the hip (DDH) on anteroposterior (AP) radiographs. Materials and Methods: Of 2601 hip AP radiographs, 5076 cropped unilateral hip joint images were used to construct a dataset that was further divided into training (80%), validation (10%), or test sets (10%). Three radiologists were asked to label the hip images as normal or DDH. To investigate the diagnostic performance of the deep learning algorithm, we calculated the receiver operating characteristics (ROC), precision-recall curve (PRC) plots, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) and compared them with the performance of radiologists with different levels of experience. Results: The area under the ROC plot generated by the deep learning algorithm and radiologists was 0.988 and 0.988-0.919, respectively. The area under the PRC plot generated by the deep learning algorithm and radiologists was 0.973 and 0.618-0.958, respectively. The sensitivity, specificity, PPV, and NPV of the proposed deep learning algorithm were 98.0, 98.1, 84.5, and 99.8%, respectively. There was no significant difference in the diagnosis of DDH by the algorithm and the radiologist with experience in pediatric radiology (p = 0.180). However, the proposed model showed higher sensitivity, specificity, and PPV, compared to the radiologist without experience in pediatric radiology (p < 0.001). Conclusion: The proposed deep learning algorithm provided an accurate diagnosis of DDH on hip radiographs, which was comparable to the diagnosis by an experienced radiologist.

Sensitivity Analysis for Production Planning Problems with Backlogging

  • Lee, In-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.12 no.2
    • /
    • pp.5-20
    • /
    • 1987
  • This paper addresses sensitivity analysis for a deterministic multi-period production and inventory model. The model assumes a piecewise linear cost structure, but permits backlogging of unsatisfied demand. Our approach to sensitivity analysis here can be divided into two basic steps; (1) to find the optimal production policy through a forward dynamic programming algorithm similar to the backward version of Zangwill [1966] and (2) to apply the penalty network approach by the author [1986] in order to derive sensitivity ranges for various model parameters. Computational aspects are discussed and topics of further research are suggested.

  • PDF

A Parameter Optimization Algorithm for Power System Stabilization (전력 계통 안정화를 위한 선재설계에 관한 연구)

  • 곽노홍;문영현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.8
    • /
    • pp.792-804
    • /
    • 1990
  • This paper describes an efficient optimization algorithm by calculating sensitivity function for power system stabilization. In power system, the dynamic performance of exciter, governor etc. following a disturbance can be presented by a nonlinear differential equation. Since a nonlinear equation can be linearized for small disturbances, the state equation is expressed by a system matrix with system parameters. The objective function for power system operation will be related to the system parameter and the initial state at the optimal control condition for control or stabilization. The object function sensitivity to the system parameter can be considered to be effective in selecting the optimal parameter of the system.

  • PDF

Adaptive Distance Relaying Based on Sensitivity Factors (민감도지수를 기반한 적응형 거리계전방식)

  • Yuan, Han-Chuan;Lim, Seong-Il;Lee, Seung-Jae;Choi, Myeon-Song;Rim, Seong-Jeong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.60-61
    • /
    • 2006
  • An unwanted trip of backup distance relays often lead to a blackout. This paper presents investigation report on involvement of backup distance relays in the past blackouts and sensitivity-factor based algorithm to make a distinction between a fault and overload caused by line tripping. A preliminary idea to prevent deterioration of the situation due to unwanted trip of distance relays by utilizing the proposed algorithm is presented.

  • PDF