• Title/Summary/Keyword: Sensitivity Measurement

Search Result 1,318, Processing Time 0.027 seconds

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi;Jafari, Kian;Sharifi, Mohammad Javad
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.794-801
    • /
    • 2018
  • This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test (엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석)

  • Yang, In-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

A Study on the Sensitivity Elevation about Spirometer Using Ultrasound Sensing Method (초음파 센싱 방식의 spirometer에 대한 sensitivity 향상 연구)

  • Han, Seung-Heon;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.204-209
    • /
    • 2005
  • The respiration measurement method using the ultrasound sensor hardly gets an influence of an error of inertia and pressure and it is a respiratory detection device available semi-permanently. This device measures the amount and flow of respiration through using a delivery speed difference of the ultrasound waves that are a return format by the pneumatic stream that is a flogging of ultrasound waves during transmission and receipt as having used a characteristic of ultrasound waves. In this paper, it improved sensitivity of a signal to happen during transmission and receipt of a sensor because measurement must be performed with a patient to the center and measurement was played in a weak breathing so that it was possible.

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

A Simulation Study of Impedance Plethysmography for Diagnosing Deep Vein Thrombosis (Deep Vein Thrombosis 진단을 위한 Impedance Plethysmography의 시뮬레이션 연구)

  • Lee, Jeon;Lee, Kyoung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.10
    • /
    • pp.494-501
    • /
    • 2001
  • In this study, the effects of vascular parameter changes and electrodes on VOP measurement based on IPG were simulated mathematically. For the evaluation of the effects of hemodynamic changes on VOP, a mathematical model, which consists of cardiovascular system model and venous occlusion model, was developed and the model solution representing the blood flow and pressure in measuring point was found by 2nd order Runge-Kutta method. And, with sensitivity coefficients obtained from finite element solution of electric field in measuring point, the effects of electrode system on measurement were evaluated. As increasing the resistance, the venous capacitance was not changed but the venous outflows were decreased and the decreased compliance reduced the venous capacitance. And, for several configurations of round electrodes and band electrodes, the sensitivity coefficients were computed using the electric field distribution along deep vein. In conclusion, the proposed mathematical cardiovascular model could be applied to the simulation study on the effects of hemodynamic parameters on DVT diagnosis with IPG. And, also the sensitivity coefficients could provide effective electrode configuration for exact measurement of VOP.

  • PDF

A Comparative Study of a Variable Overlap-area Type and Conventional Types in the Inductive Precision Position Measurement System (자속경로 단면적 및 공극변화를 이용한 인던턴스형 초정밀 변위측정 시스템)

  • Choe, Dong-Jun;Choe, In-Muk;Kim, Su-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.254-259
    • /
    • 2002
  • A variable air-gap type system is widely used for inductive precision position measurement systems. This type transducer has high sensitivity but lacks a linear measurement range due to structural nonlinearity. Furthermore, as measurement range increases, linearity error is also increased. The alternative is a variable overlap-area type system. The sensitivity of this type is determined by the initial air-gap dimension, keeps the original value and does not deteriorate linearity in spite of the variations of the measuring range.

Optical Disk Drive Servo System Using Dual Disturbance Observer

  • Lee, Sang-Han;Jeong, Dong-Seul;Chung, Chung-Choo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2087-2092
    • /
    • 2005
  • Using disturbance observer (DOB) is effective in enhancing the performance of dynamic system in the presence of disturbances. Recently the definition of disturbance has been expanded to modeling uncertainty including parameter variation, internal disturbance. Various structures of DOB have been proposed to improve sensitivity of system for better disturbance rejection performance. However in the case of improvement of sensitivity function, it tends to bring poor transient response due to cross-coupling and phase lag. Furthermore it could be very sensitive to measurement noise due to increased peak of complementary sensitivity function. In this paper, a dual disturbance observer (Dual-DOB) is proposed to reduce the effect of such cross-coupling. It is possible for us to improve the sensitivity function with additional external DOB with hardly affecting complementary sensitivity function. Thus it is able to have robustness against measurement noise. Since we are able to design DOBs of internal and external loop independently, we could prevent transient response quality from degrading while improving the sensitivity function. The proposed Dual-DOB is applied to a commercial optical disk drive tracking servo system. The experimental result shows that the Dual-DOB is an effective method in rejecting the disturbance as well as improving the tracking performance.

  • PDF

The Determination of Temperature and Humidity Sensitivity Coefficients of Torque Transducers using Seasonal Climatic Changes of Ambient Conditions in the Laboratory (계절에 따른 실험실 환경변화를 이용한 토크측정기의 온도 및 습도 감도계수 결정)

  • Derebew, Mulugeta;Kim, Min Seok;Park, Yon Kyu;Lee, Ho Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.2
    • /
    • pp.185-190
    • /
    • 2015
  • This paper presents a new method to determine sensitivity coefficients of temperature and humidity of torque transducers by using a natural and seasonal variation of ambient conditions at the laboratory. We had measured the sensitivities of the torque transducers over almost one year using the KRISS 2 kN m torque standard machine. The sensitivity data acquired at various ambient conditions were processed using our measurement model to extract the sensitivity coefficients of temperature and humidity simultaneously with high precision. A comparison with a previous method using an environmental control chamber was carried out to test the feasibility of using our new method. Two results agreed within the uncertainty. We revealed that the torque measuring errors could be 8 times higher than the measurement and calibration capability of KRISS torque standard machine if the sensitivity changes due to the temperature and humidity are not properly corrected during a calibration.

Alternative Immunossays

  • Barnard, G.J.R.;Kim, J.B.;Collins, W.P.
    • Korean Journal of Animal Reproduction
    • /
    • v.9 no.2
    • /
    • pp.133-139
    • /
    • 1985
  • An immunoassay may be defined as an analytical procedure involving the competitive reaction between a limiting concentration of specific antibody and two populations of antigen, one of which is labelled or immobillized. The advent of immunoassay has revolutionised our knowledge of reproductive physiology and the practice of veterinary and clinical medicine. Radioimmunoassay (RIA) was the first of these methods to be developed, which meausred the analyte with good sensitivity, accuracy and precision (1,2). The essential components of RIA are:-(i) a limited concentration of antibodies, (ii) a reference preparation, and (iii) an antigen labelled with a radioisotope (usually tritium or iodine-125). Most procedures invelove isolating the antibody-bound fraction and measuring the amount of labelled antigen. Good facilities are available for scintilltion counting, data reduction nd statistical analysis. RIA is undergoing refinement through:-(i) the introduction of new techniques to separate the antibody-bound and free fractions which minimize the misclassification of labelled antigen into these compartments, and the amount of non-specfic binding. (3), (ii) the development of non-extration for the measurement of haptens (4), (iii) the determination of a, pp.rent free (i.e. non-protein bound) analytes (5), and (iv) the use of monoclonal antibodies(6). In 1968, Miles and Hales introduced in important new type of immunoassay which they termed immunora-diometric assay (IRMA) based on t도 use of isotopically labelled specific antibodies(7) in a move from limited to excess reagent systems. The concept of two-site IRMAs (with a capture antibody on a solid-phase, and a second labelled antibody to a different antigenic determinant of the analyte) has enabled the development of more sensitive and less-time consuming methods for the measurement of protein hormones ovar wide concentration of analyte (8). The increasing use of isotopic methos for diverse a, pp.ications has exposed several problems. For example, the radioactive half-life and radiolysis of the labelled reagent limits assay sensitivity and imposes a time limit on the usefulness of a kit. In addition, the potential health hazards associated with the use and disposal of radioactive cmpounds and the solvents and photofluors necessary for liquid scientillation counting are incompatable with the development of extra-laboratory tests. To date, the most practical alternative labels to radioisotopes, for the measurement of analytes in a concentration > 1 ng/ml, are erythrocytes, polystyrene particiles, gold sols, dyes and enzymes or cofactors with a visual or colorimetric end-point(9). Increased sensitivity to<1 pg/ml may be obtained with fluorescent and chemiluminescent labels, or enzymes with a fluorometric, chemiluminometric or bioluminometric end-point. The sensitivity of any immunoassay or immunometric assay depends on the affinity of the antibody-antigen reaction, the specific activity of the label, the precision with which the reagents are manipulated and the nonspecific background signal (10). The sensitivity of a limited reagent system for the measurement of haptens or proteins is mainly dependent upon the affinity of the antibodies and the smalleest amount of reagent that may be manipulated. Consequently, it is difficult in practice to improve on the sensitivity obtained with iodine-125 as the label. Conversely, with excess reagent systems for the measurement of proteins it is theoretically possible to increase assay sensitivity at least 1000 fold with alternative luminescent labels. To date, a 10-fold improvement has been achieved, and attempts are being made to reduce the influence of other variables on the specific signal from the immunoreaction.

  • PDF

Review of SQUID Sensors for Measuring Magnetocardiography (심자도 측정을 위한 SQUID 센서 기술의 개발 현황)

  • Lee, Y.H.;Kim, J.M.;Yu, K.K.;Kim, K.;Kwon, H.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • Measurement of magnetic signals generated from electric activity of myocardium provides useful information for the functional diagnosis of heart diseases. Key technical component of the magnetocardiography (MCG) technology is SQUID. To measure MCG signals with high signal-to-noise ratio, sensitive SQUID magnetic field sensors are needed. Present magnetic field sensors based on Nb SQUIDs have field sensitivity good enough to measure most of MCG signals. However, for accurate measurement of fine signal pattern or detection of local atrial fibrillation signals, we may need higher field sensitivity. In addition to field sensitivity, economic aspect of the SQUID system is also important. To simplify the SQUID readout electronics, the output voltage or flux-to-voltage transfer of SQUID should be large enough so that direct measurement of SQUID output can be done using room-temperature preamplifiers. Double relaxation oscillation SQUID (DROS), having about 10 times larger flux-to-voltage transfers than those of DC-SQUIDs, was shown to be a good choice to make the electronics compact. For effective cancellation of external noise inside a thin economic shielded room, first-order axial gradiometer with high balance, simple structure and long-baseline is needed. We developed a technology to make the axial gradiometer compact using direct bonding of superconductive wires between pickup coil and input coil. Conventional insert has mechanical support to hold the gradiometer array, and the dewar neck has equal diameter with the dewar bottom. Boiling of the liquid He can generate mechanical vibrations in the gradiometer array due to mechanical connection structure. Elimination of the mechanical support, and direct mounting of the gradiometer array into the dewar bottom can reduce the dewar neck diameter, resulting in the reduction of liquid He consumption.