• Title/Summary/Keyword: Sensitivity Function

Search Result 1,486, Processing Time 0.027 seconds

Enhanced High Contrast Image Rendering Method Using Visual Properties for Sharpness Perception (시각 선명도 감각 특성을 이용한 개선된 고명암 대비 영상 렌더링 기법)

  • Lee, Geun-Young;Lee, Sung-Hak;Kwon, Hyuk-Ju;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.8
    • /
    • pp.669-679
    • /
    • 2013
  • When an image is converted from HDR (high dynamic range) to LDR (low dynamic range), a tone mapping process is the essential component. Many TMOs (tone mapping operators) have been motivated by human vision which has lower physical luminance range than that in real scene. The representative of human vision properties which motivate TMOs is the local adaptation. However, TMOs are ultimately compressing image information such as contrast, saturation, etc. and the compression causes defects in image quality. In this paper, in order to compensate the degradation of the image which is caused by TMOs, the visual acuity-based edge stop function is proposed for applying the property of human vision to base-detail separation. In addition, using CSF (contrast sensitivity function) which represents the relationship among spatial frequency, contrast sensitivity, and luminance, the sharpness filter is designed and adaptively applied to the detail layer in regard to surround luminance.

Application of Newton's Approach for Transient Stability Improvement by Using Generation Rescheduling (발전력 재배분을 이용하여 과도안정도를 향상하기 위한 Newton's Approach 응용)

  • Kim, Kyu-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.68-75
    • /
    • 2013
  • This paper presents a scheme to improve transient stability using Newton's Approach for generation rescheduling. For a given contingency, the energy margin and sensitivities are computed. The bigger energy margin sensitivity of generator is, the more the generation of the generator effects to the transient stability. According to energy margin sensitivity, the control variables of generation rescheduling are selected. The fuel cost function is used as objective function to reallocate power generation. The results are compared to the results of time simulation to show its the effectiveness.

Electrical Resistivity Tomography for Inverse Problem Using FEM (유한요소법을 이용한 전기 비저항 탐사법의 저항역산)

  • Lim, Sung-Ki;Kim, Min-Kyu;Jung, Hyun-Kyo;Koh, Chang-Seop
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.154-156
    • /
    • 1996
  • A new method for electric resistivity tomography(ERT) is developed for geophysical inverse problems by adapting the sensitivity analysis. The outputs of the potential electrodes are computed using two dimensional finite element method in the wave number space by Fourier transforming the governing equations. The resistance distribution in the region of interests, which makes the computed potential distribution coincide with the measured potential, is found by minimizing the objective function using an optimization method. In this process the sensitivity analysis is introduced in order to compute the derivatives of the objective function. And an adjoint variable method is used to save the computational efforts for sensitivity coefficients.

  • PDF

The Optimum Design of Magnet Over Head Crane and the Sensitivity Analysis for Orthogonal Array (마그네트 천장크레인의 최적설계와 직교배열을 이용한 민감도 분석)

  • 노영희;홍도관;최석창;안찬우;한근조
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.786-790
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. The objective function and restricted function were estimated by the orthogonal array, and the sensitivity analysis of design variable fur that was operated.

  • PDF

A Magnet Pole Shape Optimization of a Large Scale BLDC Motor Using a RSM With Design Sensitivity Analysis (민감도기법과 RSM을 이용한 대용량 BLDC 전동기 영구자석의 형상 최적화)

  • Shin, Pan-Seok;Chung, Hyun-Koo;Woo, Sung-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.735-741
    • /
    • 2009
  • This paper presents an algorithm for the permanent magnet shape optimization of a large scale BLDC(Brushless DC) motor to minimize the cogging torque. A response surface method (RSM) using multiquadric radial basis function is employed to interpolate the objective function in design parameter space. In order to get a reasonable response surface with relatively small number of sampling data points, additional sampling points are added on the basis of design sensitivity analysis computed by using FEM. The algorithm has 2 stages: the first stage is to determine the PM arc angle, and the 2nd stage is to optimize the magnet pole shape. The developed algorithm is applied to a 5MW BLDC motor to get a minimum cogging torque. After 3 iterations with 4 design parameters, the cogging torque is reduced to 13.2% of the initial one.

Generation Rescheduling Based on Energy Margin Sensitivity for Transient Stability Enhancement

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Hwang, Kab-Ju;Song, Kyung-Bin;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents a generation rescheduling method for the enhancement of transient stability in power systems. The priority and the candidate generators for rescheduling are calculated by using the energy margin sensitivity. The generation rescheduling formulates the Lagrangian function with the fuel cost and emission such as NOx and SOx from power plants. The generation rescheduling searches for the solution that minimizes the Lagrangian function by using the Newton’s approach. While the Pareto optimum in the fuel cost and emission minimization has a drawback of finding a number of non-dominated solutions, the proposed approach can explore the non-inferior solutions of the multiobjective optimization problem more efficiently. The method proposed is applied to a 4-machine 6-bus system to demonstrate its effectiveness.

Design of a Current-Mode CCII-Based Bandpass Filter from Immittance Function Simulator using Commercial Available CCII (AD844)

  • Prakobnoppakao, Songphan;Chipipop, Boonruk;Surakampontorn, Wanlop;Watanabe, Kenzo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.743-746
    • /
    • 2002
  • This paper proposes the design of a current-mode CCII-based 2$\^$nd/ _order bandpass biquad filter from a grounded series capacitor and frequency-dependent negative conductor ( C-D ) immittance function simulator using the macro model of a commercial available CCII+, AD844, from Analog Devices, Inc. The results are compared with the other results those are designed using ideal model of CCII-. The gain and phase deviations; due to the effects of passive sensitivity, active sensitivity, gain sensitivity and component variability; are considered using Monte-Carlo analysis of PSpice program.

  • PDF

Prediction of Dynamic Characteristics of Continuous Systems Due to the Mass Modification (질량변경에 따른 연속계의 동특성변화 예측)

  • 이정윤;최상렬;박천권;오재응;정석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.248-256
    • /
    • 1993
  • This paper deriver the generalized mass to find dynamic characteristics and its derivatives of a continous system. And a new sensitivity analysis method is presented by using the amount of change of generalized mass and vibrational mode caused by the variation of lumped and distributed mass. In this paper, to get or detect appropriate results, cantilever beam and stepped beam are used. Deviations of sensitivity coefficient, natual frequency, vibrational mode and transfer function are calculated as result, and compared with the theoretical exact values.

Structural Dynamic Optimization Using a Genetic Algorithm(GA) (유전자 알고리즘(GA)을 이용한 구조물의 동적해석 및 최적화)

  • 이영우;성활경
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.93-99
    • /
    • 2000
  • In many dynamic structural optimization problems, the goal is to reduce the total weight of the structure without causing the resonance. Up to now, gradient informations(i.e., design sensitivity) have been used to achieve the goal. For some class of dynamic problems, especially coalescent eigenvalue Problems with multiobjective optimization, the design sensitivity analysis is too much complicated mathematically and numerically. Therefore, this article proposes a new technique fur structural dynamic modification using a mode modification method with Genetic Algorithm(GA). In GA formulation, fitness is defined based on penalty function approach. Design variables are iteratively improved by using genetic algorithm. Two numerical examples are shown, (ⅰ) a cantilevered plate, and (ⅱ) H-shaped structure. The results demonstrate that the proposed method is highly efficient.

  • PDF

A Design Using Sensitivity Information (민감도 정보를 이용한 설계 방법)

  • Kim, Y.I.;Yi, J.W.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1248-1253
    • /
    • 2003
  • Sensitivity information has been used for linearization of nonlinear functions in optimization. Basically, sensitivity is a derivative of a function with respect to a design variable. Design sensitivity is repeatedly calculated in optimization. Since sensitivity calculation is extremely expensive, there are studies to directly use the sensitivity in the design process. When a small design change is required, an engineer makes design changes by considering the sensitivity information. Generally, the current process is performed one-by-one for design variables. Methods to exploit the sensitivity information are developed. When a designer wants to change multiple variables with some relationship, the directional derivative can be utilized. In this case, the first derivative can be calculated. Only small design changes can be made from the first derivatives. Orthogonal arrays can be used for moderate changes of multiple variables. Analysis of Variance is carried out to find out the regional influence of variables. A flow is developed for efficient use of the methods. The sensitivity information is calculated by finite difference method. Various examples are solved to evaluate the proposed algorithm.

  • PDF