• Title/Summary/Keyword: Sensitivity Analysis(민감도 해석)

Search Result 822, Processing Time 0.038 seconds

Sensitivity Analysis for Natural Frequency of Torsional Shafting with Constant Cross Section Using Transfer of Stiffness Coefficient (강성계수의 전달을 이용한 일정 단면을 갖는 비틀림 축계의 고유진동수 민감도 해석)

  • Choi, Myung-Soo;Byun, Jung-Hwan
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.11-16
    • /
    • 2012
  • In this paper, the authors formulate the sensitivity analysis algorithm for the natural frequency of a torsional shafting by expanding the transfer stiffness coefficient method. The basic concept of the present algorithm is based on the transfer of sensitivity stiffness coefficient, which is the derivative of stiffness coefficient with respect to design parameter, at every node from the first node to the last node in analytical model. The effectiveness of the present algorithm is confirmed by comparing the results of the sensitivity analysis and those of the reanalysis for the natural frequencies of a torsional shafting with a constant cross section. In numerical calculation, the design parameter is the diameter of the shaft element of the torsional shafting.

Global Sensitivity Analysis of Joints for Plug-in Digital Framework (플러그인 디지털 프레임웍을 위한 연결부 전역민감도 해석)

  • Lee, Dooho;Won, Young-Woo;Kwon, Jong-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Plug-In Digital Framework is a system response analysis tool that is employed when system components are composed of black-box modules. Generally, the dynamic characteristics of joints between the system components significantly affect system responses, and they lead to displacement- and frequency-dependent stiffness and loss factor. Thus, the sensitivity of each joint parameters should be estimated from a global perspective. In this study, we introduce a global sensitivity analysis procedure under the Plug-In Digital Framework. To efficiently calculate the system responses, we introduce the frequency response function (FRF)-based substructuring method. Using the random balance designs (RBD), we generate the system responses and estimate the global first-order sensitivities for each joint stiffness. We apply the proposed global sensitivity analysis method to an interior noise problem of a passenger car, and we evaluate the efficiency of the global sensitivity analysis method.

Shape Design Sensitivity Analysis of Two-Dimensional Thermal Conducting Solids with Multiple Domains Using the Boundary Element Method (경계요소법을 이용한 2 차원 복수 영역 열전도 고체의 형상 설계 민감도 해석)

  • 이부윤;임문혁
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.175-184
    • /
    • 2003
  • A method of the shape design sensitivity analysis based on the boundary integral equation formulation is presented for two-dimensional inhomogeneous thermal conducting solids with multiple domains. Shape variation of the external and interface boundary is considered. A sensitivity formula of a general performance functional is derived by taking the material derivative to the boundary integral identity and by introducing an adjoint system. In numerical analysis, state variables of the primal and adjoint systems are solved by the boundary element method using quadratic elements. Two numerical examples of a compound cylinder and a thermal diffuser are taken to show implementation of the shape design sensitivity analysis. Accuracy of the present method is verified by comparing analyzed sensitivities with those by the finite difference. As application to the shape optimization, an optimal shape of the thermal diffuser is found by incorporating the sensitivity analysis algorithm in an optimization program.

Sensitivity Analysis of Liquid Rocket Engine Performance (액체로켓엔진의 성능 민감도 해석)

  • Cho, Won-Kook;Nam, Chang-Ho;Park, Soon-Young;Kim, Chul-Woong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3159-3162
    • /
    • 2008
  • A sensitivity analysis of the liquid rocket engine has been made. A mode analysis program is used to predict the performance change due to the variation of rocket engine operating environment. The propellant supply pressure and density are the major variables of the operating condition. The material properties of the turbine driving gas is assumed as the function of mixture ratio. The discrepancies of performance change between constant turbine driving gas properties and variable properties are greater for the case of fuel pump inlet pressure change than the oxidizer pump inlet pressure change.

  • PDF

Kinematic Design Sensitivity Analysis of Suspension systems Using Direct differentiation (직접미분법을 이용한 현가장치의 기구학적 민감도해석)

  • 민현기;탁태오;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.38-48
    • /
    • 1997
  • A method for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. For modeling of vehicle suspensions, the multibody dynamic formulation is adopted, where suspensions are assumed as combination of rigid bodies and ideal frictionless joints. In a relative joint coordinate setting, kinematic constraint equations are obtained by imposing cut-joints that transform closed-loop shape suspension systems into open-loop systems. By directly differentiating the constraint equations with respect to kinematic design variables, such as length of bodies, notion axis, etc., sensitivity equations are derived. By solving the sensitivity equations, sensitivity of static design factors that can be used for design improvement, can be obtained. The validity and usefulness of the method are demonstrated through an example where kinematic sensitivity analysis of a MacPherson strut suspension of performed.

  • PDF

Design Sensitivity Analysis and Optimization of Plane Arch Structures Using Variational Formulation (변분공식화를 이용한 2차원 아치 구조물의 설계민감도 해석 및 최적설계)

  • 최주호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.2
    • /
    • pp.159-171
    • /
    • 2001
  • 평면 아치 구조물에 대해 선형 탄성 변분방정식에 기반을 둔 설계민감도 해석을 위한 일반적 이론을 개발하였다. 아치 구조물내의 임의 마디에 정의된 응력범함수를 고려하였고 이에 대한 설계민감도 공식을 유도하기 위해 전미분(material derivative) 개념과 보조(adjoint) 변수 방법을 도입하였다. 얻어진 민감도 공식은 구조해석 결과를 얻고 나면 이들로부터 단순 대수연산을 통해 계산이 되므로 적용이 간편할 뿐 아니라 해의 정확도가 높은 잇점이 있다. 본 방법은 아치의 형상을 매개변수를 통해 표현하므로 얕은 아치에 국한하지 않고 어떠한 형상도 고려가 가능하며, 나아가서 아치의 형상변화를 형상에 대해 수직뿐 아니라 접선방향도 포함하여 일반적으로 고려하므로 다양한 형상설계가 가능하다. 몇 가지 예제에서 민감도 계산을 수행함으로써 본 방법의 정확도와 효율성을 입증하였으며, 두 가지의 설계최적화 문제를 대상으로 실제로 두께 및 형상최적설계를 수행하였다.

  • PDF

Kinematic Design Sensitivity Analysis of Suspension System Using a Symbolic Computation Method (기호계산 기법을 이용한 현가장치의 기구학적 민감도 해석)

  • 송성재;탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.247-259
    • /
    • 1996
  • Kinematic design sensitivity analysis for vehicle in suspension systems design is performed. Suspension systems are modeled using composite joins to reduce the number of the constraint equations. This allows a semi-analytical approach that is computerized symbolic manipulation before numerical computations and that may compensate for their drawbacks. All the constraint equations including design variables are derived in symbolic equations for sensitivity analysis. By directly differentiating the equations with respect to design variables, sensitivity equations are obtained. Since the proposed method only requires the hard point data, sensitivity analysis is possible in suspension design stage.

  • PDF

Study on Numerical Sensitivity and Uncertainty in the Analysis of Parametric Roll (파라메트릭 횡동요 수치해석의 민감도 및 불확실성에 대한 연구)

  • Park, Dong-Min;Kim, Tae-Young;Kim, Yong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.60-67
    • /
    • 2012
  • This study considers the numerical analysis on parametric roll for container ships. As a method of numerical simulation, an impulse-response-function approach is applied in time domain. A systematic study is carried out for the parametric roll of two container ships, particularly observing the sensitivity of computational results to some parameters which can affect the analysis of parametric roll. The parameters to be considered are metacentric height (GM), simulation time window, and the discretization of wave spectrum. Based on the result of parametric roll simulation, numerical sensitivity and uncertainty in computational analysis are discussed.

The Sensitivity Analysis and Optimization for the Development of the SMD Performance (표면 실장기(SMD) 성능 개선을 위한 민감도 해석 및 최적화 방안)

  • Cha, In-Hyuk;Han, Chang-Soo;Kim, Jung-Duck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.120-128
    • /
    • 1997
  • In this paper, A design strategy of the Surface Mounting Device for accurate and better performance is studied. Analytical modeling, sensitivity analysis, and optimization are being conducted. The ANSYS software and experimental method are used for the verification of the analytical equations with boundary conditions. Through the sensitivity analysis, the most dominant design parameter can be detected. The optimum design parameters for improving the given performances are selected by using the optimiza- tion algorithm. The design tool based on the design strategy for the analysis, modeling, and optimization will be useful for are-design and better improving of the SMD.

  • PDF

Shape Design Optimization Using Isogeometric Analysis (등기하 해석법을 이용한 형상 최적설계)

  • Ha, Seung-Hyun;Cho, Seon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.233-238
    • /
    • 2008
  • In this paper, a shape design optimization method for linearly elastic problems is developed using isogeometric approach. In many design optimization problems for practical engineering models, initial raw data usually come from a CAD modeler. Then, designers should convert the CAD data into finite element mesh data since most of conventional design optimization tools are based on finite element analysis. During this conversion, there are some numerical errors due to geometric approximation, which causes accuracy problems in response as well as design sensitivity analyses. As a remedy for this phenomenon, the isogeometric analysis method can be one of the promising approaches for the shape design optimization. The main idea of isogeometric approach is that the basis functions used in analysis is exactly the same as the ones representing the geometry. This geometrically exact model can be used in the shape sensitivity analysis and design optimization as well. Therefore the shape design sensitivity with high accuracy can be obtained, which is very essential for a gradient-based optimization. Through numerical examples, it is verified that the shape design optimization based on an isogeometic approach works well.