• Title/Summary/Keyword: Sensing layer

Search Result 486, Processing Time 0.022 seconds

Backpack- and UAV-based Laser Scanning Application for Estimating Overstory and Understory Biomass of Forest Stands (임분 상하층의 바이오매스 조사를 위한 백팩형 라이다와 드론 라이다의 적용성 평가)

  • Heejae Lee;Seunguk Kim;Hyeyeong Choe
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.363-373
    • /
    • 2023
  • Forest biomass surveys are regularly conducted to assess and manage forests as carbon sinks. LiDAR (Light Detection and Ranging), a remote sensing technology, has attracted considerable attention, as it allows for objective acquisition of forest structure information with minimal labor. In this study, we propose a method for estimating overstory and understory biomass in forest stands using backpack laser scanning (BPLS) and unmanned aerial vehicle laser scanning (UAV-LS), and assessed its accuracy. For overstory biomass, we analyzed the accuracy of BPLS and UAV-LS in estimating diameter at breast height (DBH) and tree height. For understory biomass, we developed a multiple regression model for estimating understory biomass using the best combination of vertical structure metrics extracted from the BPLS data. The results indicated that BPLS provided accurate estimations of DBH (R2 =0.92), but underestimated tree height (R2 =0.63, bias=-5.56 m), whereas UAV-LS showed strong performance in estimating tree height (R2 =0.91). For understory biomass, metrics representing the mean height of the points and the point density of the fourth layer were selected to develop the model. The cross-validation result of the understory biomass estimation model showed a coefficient of determination of 0.68. The study findings suggest that the proposed overstory and understory biomass survey methods using BPLS and UAV-LS can effectively replace traditional biomass survey methods.

Label Embedding for Improving Classification Accuracy UsingAutoEncoderwithSkip-Connections (다중 레이블 분류의 정확도 향상을 위한 스킵 연결 오토인코더 기반 레이블 임베딩 방법론)

  • Kim, Museong;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.175-197
    • /
    • 2021
  • Recently, with the development of deep learning technology, research on unstructured data analysis is being actively conducted, and it is showing remarkable results in various fields such as classification, summary, and generation. Among various text analysis fields, text classification is the most widely used technology in academia and industry. Text classification includes binary class classification with one label among two classes, multi-class classification with one label among several classes, and multi-label classification with multiple labels among several classes. In particular, multi-label classification requires a different training method from binary class classification and multi-class classification because of the characteristic of having multiple labels. In addition, since the number of labels to be predicted increases as the number of labels and classes increases, there is a limitation in that performance improvement is difficult due to an increase in prediction difficulty. To overcome these limitations, (i) compressing the initially given high-dimensional label space into a low-dimensional latent label space, (ii) after performing training to predict the compressed label, (iii) restoring the predicted label to the high-dimensional original label space, research on label embedding is being actively conducted. Typical label embedding techniques include Principal Label Space Transformation (PLST), Multi-Label Classification via Boolean Matrix Decomposition (MLC-BMaD), and Bayesian Multi-Label Compressed Sensing (BML-CS). However, since these techniques consider only the linear relationship between labels or compress the labels by random transformation, it is difficult to understand the non-linear relationship between labels, so there is a limitation in that it is not possible to create a latent label space sufficiently containing the information of the original label. Recently, there have been increasing attempts to improve performance by applying deep learning technology to label embedding. Label embedding using an autoencoder, a deep learning model that is effective for data compression and restoration, is representative. However, the traditional autoencoder-based label embedding has a limitation in that a large amount of information loss occurs when compressing a high-dimensional label space having a myriad of classes into a low-dimensional latent label space. This can be found in the gradient loss problem that occurs in the backpropagation process of learning. To solve this problem, skip connection was devised, and by adding the input of the layer to the output to prevent gradient loss during backpropagation, efficient learning is possible even when the layer is deep. Skip connection is mainly used for image feature extraction in convolutional neural networks, but studies using skip connection in autoencoder or label embedding process are still lacking. Therefore, in this study, we propose an autoencoder-based label embedding methodology in which skip connections are added to each of the encoder and decoder to form a low-dimensional latent label space that reflects the information of the high-dimensional label space well. In addition, the proposed methodology was applied to actual paper keywords to derive the high-dimensional keyword label space and the low-dimensional latent label space. Using this, we conducted an experiment to predict the compressed keyword vector existing in the latent label space from the paper abstract and to evaluate the multi-label classification by restoring the predicted keyword vector back to the original label space. As a result, the accuracy, precision, recall, and F1 score used as performance indicators showed far superior performance in multi-label classification based on the proposed methodology compared to traditional multi-label classification methods. This can be seen that the low-dimensional latent label space derived through the proposed methodology well reflected the information of the high-dimensional label space, which ultimately led to the improvement of the performance of the multi-label classification itself. In addition, the utility of the proposed methodology was identified by comparing the performance of the proposed methodology according to the domain characteristics and the number of dimensions of the latent label space.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.

Using Synoptic Data to Predict Air Temperature within Rice Canopies across Geographic Areas (종관자료를 이용한 벼 재배지대별 군락 내 기온 예측)

  • 윤영관;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.199-205
    • /
    • 2001
  • This study was conducted to figure out temperature profiles of a partially developed paddy rice canopy, which are necessary to run plant disease forecasting models. Air temperature over and within the developing rice canopy was monitored from one month after transplanting (June 29) to just before heading (August 24) in 1999 and 2001. During the study period, the temporal march of the within-canopy profile was analyzed and an empirical formula was developed for simulating the profile. A partially developed rice canopy temperature seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures. On sunny days, air temperature at the height of maximum leafages was increased at the same rate as the ambient temperature above the canopy after sunrise. Below the height, the temperature increase was delayed until the solar noon. Air temperature near the water surface varied much less than those of the outer- and the upper-canopy, which kept increasing by the time of daily maximum temperature observed at the nearby synoptic station. After sunset, cooling rate is much less at the lower canopy, resulting in an isothermal profile at around the midnight. A fairly consistent drop in temperature at rice paddies compared with the nearby synoptic weather stations across geographic areas and time of day was found. According to this result, a cooling by 0.6 to 1.2$^{\circ}C$ is expected over paddy rice fields compared with the officially reported temperature during the summer months. An empirical equation for simulating the temperature profile was formulated from the field observations. Given the temperature estimates at 150 cm above the canopy and the maximum deviation at the lowest layer, air temperature at any height within the canopy can be predicted by this equation. As an application, temperature surfaces at several heights within rice fields were produced over the southwestern plains in Korea at a 1 km by 1km grid spacing, where rice paddies were identified by a satellite image analysis. The outer canopy temperature was prepared by a lapse rate corrected spatial interpolation of the synoptic temperature observations combined with the hourly cooling rate over the rice paddies.

  • PDF

Implantable Flexible Sensor for Telemetrical Real-Time Blood Pressure Monitoring using Polymer/Metal Multilayer Processing Technique (폴리머/ 금속 다층 공정 기술을 이용한 실시간 혈압 모니터링을 위한 유연한 생체 삽입형 센서)

  • Lim Chang-Hyun;Kim Yong-Jun;Yoon Young-Ro;Yoon Hyoung-Ro;Shin Tae-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.599-604
    • /
    • 2004
  • Implantable flexible sensor using polymer/metal multilayer processing technique for telemetrical real-time blood pressure monitoring is presented. The realized sensor is mechanically flexible, which can be less invasively implanted and attached on the outside of blood vessel to monitor the variation of blood pressure. Therefore, unlike conventional detecting methods which install sensor on the inside of vessel, the suggested monitoring method can monitor the relative blood pressure without injuring blood vessel. The major factor of sudden death of adults is a disease of artery like angina pectoris and myocardial infarction. A disease of circulatory system resulted from vessel occlusion by plaque can be preventable and treatable early through continuous blood pressure monitoring. The procedure of suggested new method for monitoring variation of blood pressure is as follows. First, integrated sensor is attached to the outer wall of blood vessel. Second, it detects mechanical contraction and expansion of blood vessel. And then, reader antenna recognizes it using telemetrical method as the relative variation of blood pressure. There are not any active devices in the sensor system; therefore, the transmission of energy and signal depends on the principle of mutual inductance between internal antenna of LC resonator and external antenna of reader. To confirm the feasibility of the sensing mechanism, in vitro experiment using silicone rubber tubing and blood is practiced. First of all, pressure is applied to the silicone tubing which is filled by blood. Then the shift of resonant frequency with the change of applied pressure is measured. The frequency of 2.4 MHz is varied while the applied pressure is changed from 0 to 213.3 kPa. Therefore, the sensitivity of implantable blood pressure is 11.25 kHz/kPa.

Overview and Prospective of Satellite Chlorophyll-a Concentration Retrieval Algorithms Suitable for Coastal Turbid Sea Waters (연안 혼탁 해수에 적합한 위성 클로로필-a 농도 산출 알고리즘 개관과 전망)

  • Park, Ji-Eun;Park, Kyung-Ae;Lee, Ji-Hyun
    • Journal of the Korean earth science society
    • /
    • v.42 no.3
    • /
    • pp.247-263
    • /
    • 2021
  • Climate change has been accelerating in coastal waters recently; therefore, the importance of coastal environmental monitoring is also increasing. Chlorophyll-a concentration, an important marine variable, in the surface layer of the global ocean has been retrieved for decades through various ocean color satellites and utilized in various research fields. However, the commonly used chlorophyll-a concentration algorithm is only suitable for application in clear water and cannot be applied to turbid waters because significant errors are caused by differences in their distinct components and optical properties. In addition, designing a standard algorithm for coastal waters is difficult because of differences in various optical characteristics depending on the coastal area. To overcome this problem, various algorithms have been developed and used considering the components and the variations in the optical properties of coastal waters with high turbidity. Chlorophyll-a concentration retrieval algorithms can be categorized into empirical algorithms, semi-analytic algorithms, and machine learning algorithms. These algorithms mainly use the blue-green band ratio based on the reflective spectrum of sea water as the basic form. In constrast, algorithms developed for turbid water utilizes the green-red band ratio, the red-near-infrared band ratio, and the inherent optical properties to compensate for the effect of dissolved organisms and suspended sediments in coastal area. Reliable retrieval of satellite chlorophyll-a concentration from turbid waters is essential for monitoring the coastal environment and understanding changes in the marine ecosystem. Therefore, this study summarizes the pre-existing algorithms that have been utilized for monitoring turbid Case 2 water and presents the problems associated with the mornitoring and study of seas around the Korean Peninsula. We also summarize the prospective for future ocean color satellites, which can yield more accurate and diverse results regarding the ecological environment with the development of multi-spectral and hyperspectral sensors.