• Title/Summary/Keyword: Sensing layer

Search Result 488, Processing Time 0.053 seconds

Optimal Channel Sensing for Heterogeneous Cognitive Networks: An Analytical Approach

  • Yu, Heejung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.2987-3002
    • /
    • 2013
  • The problem of optimal channel sensing in heterogeneous cognitive networks is considered to maximize the system throughput performance. The characteristics of an optimal operating sensing point maximizing the overall system rate are investigated under several rate criteria including the sum rate, the minimum of the primary and secondary rates, and the secondary rate with a guaranteed primary rate. Under the sum rate criterion, it is shown that the loss by imperfect sensing is no greater than half of the sum rate achieved by the perfect time sharing approach in a two user case if the sensing point is optimally designed.

A Study on the SiO2Sensing Layer Used in ISFET (ISFET용 SiO2 감응박막에 관한 연구)

  • 최두진;임공진;정형진;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.1
    • /
    • pp.79-85
    • /
    • 1990
  • A study on the oxidation of SiO2 sensing layer was done at 950, 1000, 105$0^{\circ}C$ under dry O2 atmosphere. The rate determining step around the oxide layer thickness, 1000$\AA$ was different with the oxidation temperature, as follows ; ⅰ) linear growth at 95$0^{\circ}C$ and ⅱ) parabolic growth at 100$0^{\circ}C$ and 105$0^{\circ}C$. The flatness of SiO2 film was observed within $\pm$1% and surface state charge density was reduced by annealing in N2 atmosphere. Finally, pH sensitivity of SiO2 film, in the range of pH 3-9, was 20mV/pH.

  • PDF

Fabrication and Sensing Characteristics of Multi-Walled Carbon Nanotube Gas Sensor for No2 Detection (이산화질소 감지용 다중벽 탄소나노튜브 가스센서의 제작 및 감응 특성)

  • 조우성;문승일;김영조;이윤희;주병권
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.294-298
    • /
    • 2004
  • Carbon nanotubes(CNTs) were synthesized by thermal chemical vapor deposition(CVD) method. To fabricate CNT gas sensor, catalyst metal layer was deposited on microstructure. The CNT gas detecting layer was grown by thermal CVD method on the catalyst metal layer. In order to investigate the gas sensing characteristics of the fabricated CNT gas sensor, it was exposed in NO$_2$ gas and sensitivity, response, and recovery time were measured. As the result, this sensor has better reproductibility and faster recovery time than another CNT gas sensors.

New Unsupervised Classification Technique for Polarimetric SAR Images

  • Oh, Yi-Sok;Lee, Kyung-Yup;Jang, Ge-Ba
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.255-261
    • /
    • 2009
  • A new polarimetric SAR image classification technique based on the degree of polarization (DoP) and the co-polarized phase-difference (CPD) is presented in this paper. Since the DoP and the CPD of a scattered wave provide information on the randomness of the scattering and the type of scattering mechanisms, at first, the statistics of the DoP and CPD are examined with measured polarimetric SAR image data. Then, a DoP-CPD diagram with appropriate boundaries between six different classes is developed based on the SAR image. The classification technique is verified using the JPL AirSAR and ALOS PALSAR polarimetric data. The technique may have capability to classify an SAR image into six major classes; a bare surface, a village, a crown-layer short vegetation canopy, a trunk-layer short vegetation canopy, a crown-layer forest, and a trunk-dominated forest.

A study on CO gas sensing characteristics using SiC Schottky diodes (SiC 쇼트키 장벽 다이오드를 이용한 CO 가스 감지 특성에 관한 연구)

  • 김창교;노일호;조남인;유홍진;기창진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.83-86
    • /
    • 2004
  • A high temperature tolerant microelectronic-based carbon monioxde(CO) gas sensor has been developed. The gas sensing performance has been studied over a wide temperature range$(100-300^\circ{C)}$. The gas sensitivity of the sensor is high, its initial sensing behavior is very fast, and the sensor is reproducible. Pt-SiC and $Pt-SnO_2-SiC$ diodes are fabricated using standard semiconductor processes and their CO gas-sensing behaviors are analyzed as a function of CO gas concentration and temperature by I-V and $\Delta{I-t}$ methods under steady-state and transient conditions. The sensitivity of the device with $Pt-SnO_2$ catalytic gate is higher than that of the Pt gate. The experimental results indicate that $SnO_2$ layer improves the catalytic reaction of the Pt layer.

  • PDF

Evolution of Internal Waves Near a Turning Point in the South China Sea using SAR Imagery and Numerical Models

  • Kim, Duk-Jin;Lyzenga, David R.;Choi, Woo-Young;Kim, Youn-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.385-391
    • /
    • 2007
  • Subsurface Internal Waves(IWs) can be detected in satellite images as periodic alternating brighter/darker stripes. It is known that there are two types of IWs-depression type and elevation type-depending on the water depth in stratified oceans. In this study, we have quantitatively verified the process of converting polarity from depression waves to elevation waves using ERS-2 SAR image acquired over the northern South China Sea. We simulated the evolution of IWs near a turning point with a numerical model for internal wave propagation. The simulation results near the turning point clearly showed us not only a conversion process of IWs from depression to elevation waves, but also a similar wave pattern with the observed SAR image. We also simulated SAR intensity variation near the turning point. The upper layer currents were computed at regular intervals using the numerical model, as the IWs were passing through the turning point. Then, an integrated hydrodynamic-electromagnetic model was used for simulating SAR intensity profiles from the upper layer currents. The simulated SAR intensity profiles were compared with the observed SAR intensities.

Design of Surface Plasmon Resonance Sensor with Bruggeman Effective Medium Layers (브러그만 유효 굴절 박막에서의 표면 플라즈몬 공명 센서 설계)

  • Bae, Young-Gyu;Lee, Seung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • This paper proposes a specific sensor-design strategy and the possibility of improving the sensing performance, which can be obtained by replacing part of the existing plasmonic sensor based on the Kretschmann configuration method with an effective refractive-index layer. By replacing the metal layer with an effective refractive-index layer composed of gold and the material to be sensed, an improvement in the detection performance, accompanied by an increase in the sensed incident angle, is observed, and the gold-composition ratio that demonstrates the best result is presented. Subsequently, an increase in the sensed incident angle generated in the previous step can be suppressed by randomly etching a portion of the prism adjacent to the metal layer in a sub-wavelength scale. Finally, this study analyzes the optimization of the metal-layer thickness in a given sensor structure. An effective refractive thin-film surface plasmon resonance sensor design that can achieve optimal sensing performance is then proposed.

ITO Extended Gate Reduced Graphene Oxide Field Effect Transistor For Proton Sensing Application

  • Truong, Thuy Kieu;Nguyen, T.N.T.;Trung, Tran Quang;Son, Il Yung;Kim, Duck Jin;Jung, Jin Heak;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.653-653
    • /
    • 2013
  • In this study, ITO extended gate reduced graphene oxide field effect transistor (rGO FET) was demonstrated as a transducer for a proton sensing application. In this structure, the sensing area is isolated from the active area of the device. Therefore, it is easy to deposit or modify the sensing area without affecting on the device performance. In this case, the ITO extended gate was used as a gate electrode as well as a proton sensing material. The proton sensing properties based on the rGO FET transducer were analyzed. The rGO FET device showed a high stability in the air ambient with a TTC encapsulation layer for months. The device showed an ambipolar characteristic with the Dirac point shift with varying the pH solutions. The sensing characteristics have offered the potential for the ion sensing application.

  • PDF

Remote Sensing of NO2 vertical profiles in Beijing on the basis of MAX-DOAS measurements (지상 MAX-DOAS를 이용한 중국 베이징에서의 이산화질소 연직분포 산출 및 지상자료와 비교를 통한 검증연구)

  • Ryu, Jae-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.703-708
    • /
    • 2014
  • $NO_2$ vertical profiles were retrieved via ground based MAX-DOAS measurements for the summer period in 2006 in Beijing, one of the megacities in the Northeast Asia. Large portion of $NO_2$ load was observed at the 0-1 km layer. We found that $NO_2$ rapidly decreases up to the altitude of 3 km. In addition, the retrieved $NO_2$ mixing ratios within 0-1 km layer were compared with those observed at the surface by in-situ monitor. The correlation coefficient (R) between $NO_2$mixing ratios within 0-1 km layer and those at the surface was calculated to be 0.7. The major causes of such discrepancy are thought to be both differences in measured areas and rapid decrease in $NO_2$ mixing ratio with height.

Reduced Graphene Oxide Field-effect Transistor as a Transducer for Ion Sensing Application

  • Nguyen, T.N.T.;Tien, Nguyen Thanh;Trung, Tran Quang;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.562-562
    • /
    • 2012
  • Recently, graphene and graphene-based materials such as graphene oxide (GO) or reduced graphene oxide (R-GO) draws a great attention for electronic devices due to their structures of one atomic layer of carbon hexagon that have excellent mechanical, electrical, thermal, optical properties and very high specific surface area that can be high potential for chemical functionalization. R-GO is a promising candidate because it can be prepared with low-cost from solution process by chemical oxidation and exfoliation using strong acids and oxidants to produce graphene oxide (GO) and its subsequent reduction. R-GO has been used as semiconductor or conductor materials as well as sensing layer for bio-molecules or ions. In this work, reduced graphene oxide field-effect transistor (R-GO FET) has been fabricated with ITO extended gate structure that has sensing area on ITO extended gate part. R-GO FET device was encapsulated by tetratetracontane (TTC) layer using thermal evaporation. A thermal annealing process was carried out at $140^{\circ}C$ for 4 hours in the same thermal vacuum chamber to remove defects in R-GO film before deposition of TTC at $50^{\circ}C$ with thickness of 200 nm. As a result of this process, R-GO FET device has a very high stability and durability for months to serve as a transducer for sensing applications.

  • PDF