• Title/Summary/Keyword: Sensing Remote

Search Result 5,812, Processing Time 0.027 seconds

Optics for Satellite Remote Sensing Systems

  • Opt
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1995.06a
    • /
    • pp.53-58
    • /
    • 1995
  • Examples of advanced digital electro-optic imaging systems for the satellite remote sensing applications are introduced including multispectral focal plane assembly for newly proposed 1-m spatial resolution capability.

  • PDF

A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing (Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구)

  • Sur, Hyung-Soo;Song, In-Ho;Lee, Chil-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.129-141
    • /
    • 2006
  • The image data amount is increasing rapidly that used geography, sea information etc. with great development of a remote sensing technology using artificial satellite. Therefore, people need automatic method that use image processing description than macrography for analysis remote sensing image. In this paper, we propose that acquire texture information to use GLCM(Gray Level Co-occurrence Matrix) in red tide area of artificial satellite remote sensing image, and detects red tide area by PCA(principal component analysis) automatically from this data. Method by sea color that one feature of remote sensing image of existent red tide area detection was most. but in this paper, we changed into 2 principal component accumulation images using GLCM's texture feature information 8. Experiment result, 2 principal component accumulation image's variance percentage is 90.4%. We compared with red tide area that use only sea color and It is better result.

  • PDF

Atmospheric Correction Issues of Optical Imagery in Land Remote Sensing (육상 원격탐사에서 광학영상의 대기보정)

  • Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1299-1312
    • /
    • 2019
  • As land remote sensing applications are expanding to the extraction of quantitative information, the importance of atmospheric correction is increasing. Considering the difficulty of atmospheric correction for land images, it should be applied when it is necessary. The quantitative information extraction and time-series analysis on biophysical variables in land surfaces are two major applications that need atmospheric correction. Atmospheric aerosol content and column water vapor, which are very dynamic in spatial and temporal domain, are the most influential elements and obstacles in retrieving accurate surface reflectance. It is difficult to obtain aerosol and water vapor data that have suitable spatio-temporal scale for high- and medium-resolution multispectral imagery. Selection of atmospheric correction method should be based on the availability of appropriate aerosol and water vapor data. Most atmospheric correction of land imagery assumes the Lambertian surface, which is not the case for most natural surfaces. Further BRDF correction should be considered to remove or reduce the anisotropic effects caused by different sun and viewing angles. The atmospheric correction methods of optical imagery over land will be enhanced to meet the need of quantitative remote sensing. Further, imaging sensor system may include pertinent spectral bands that can help to extract atmospheric data simultaneously.

Production of the Thematic Standard Map for Coastal Regions Based on Remote Sensing Data (원격탐사기반 연안주제도 선진화 방안 연구)

  • Lee, Yoon-Kyung;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1159-1169
    • /
    • 2017
  • Since 1970's, various satellite remote sensing technology has been developed and accumulation of observational data has been carried out, and coastal environment monitoring research is being conducted through analysis of relationship between satellite remote sensing data and coastal sedimentary environment. However, generation of coastal thematic maps by various national agencies are not included in the production of coastal themes using satellite imagery. In this study, we want to deduct the current problems through survey of marine spatial information provided by the government. The purpose of this study is to investigation the direction of the development of large scale coastal thematic maps by analyzing coastal boundary map, coastal topographic map and coastal sedimentary facies map.

APPLICATION OF REMOTE SENSING IMAGERY ON THE ESTIMATE OF EVAPOTRANSPIRATION OVER PADDY FIELD

  • Chang, Tzu-Yin;Chien, Tzu-Chieh;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.752-755
    • /
    • 2006
  • Evaportranspiration is an important factor in hydrology cycle. Traditionally, it is measured by using basin or empirical formula with meteorology data, while it does not represent the evaportranspiration over a regional area. With the advent of improved remote sensing technology, it becomes a surface parameter of research interest in the field of remote sensing. Airborne and satellite imagery are utilized in this study. The high resolution airborne images include visible, near infrared, and thermal infrared bands and the satellite images are acquired by MODIS. Surface heat fluxes such as latent heat flux and sensible heat flux are estimate by using airborne and satellite images with surface meteorological measurements. We develop a new method to estimate the evaportranspiration over the rice paddy. The surface heat fluxes are initialized with a surface energy balance concept and iterated for convergent solution with atmospheric correct functions associated with aerodynamic resistance of heat transport. Furthermore, we redistribute the total net energy into sensible heat and latent heat fluxes. The result reveals that radiation and evaporation controlled extremes can be properly decided with both airborne and satellite images. The correlation coefficient of latent heat flux and sensible heat flux with corresponding in situ observations are 0.66 and 0.76, respectively. The relative root mean squared errors (RMSEs) for latent heat flux and sensible heat flux are 97.81 $(W/m^2)$ and 124.33 $(W/m^2)$, respectively. It is also shown that the newly developed retrieval scheme performs well when it is tested by using MODIS date.

  • PDF