• Title/Summary/Keyword: Sensing Remote

Search Result 5,812, Processing Time 0.03 seconds

Estimation trial for rice production by simulation model with unmanned air vehicle (UAV) in Sendai, Japan

  • Homma, Koki;Maki, Masayasu;Sasaki, Goshi;Kato, Mizuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.46-46
    • /
    • 2017
  • We developed a rice simulation model for remote-sensing (SIMRIW-RS, Homma et al., 2007) to evaluate rice production and management on a regional scale. Here, we reports its application trial to estimate rice production in farmers' fields in Sendai, Japan. The remote-sensing data for the application was periodically obtained by multispectral camera (RGB + NIR and RedEdge) attached with unmanned air vehicle (UAV). The airborne images was 8 cm in resolution which was attained by the flight at an altitude of 115 m. The remote-sensing data was relatively corresponded with leaf area index (LAI) of rice and its spatial and temporal variation, although the correspondences had some errors due to locational inaccuracy. Calibration of the simulation model depended on the first two remote-sensing data (obtained around one month after transplanting and panicle initiation) well predicted rice growth evaluated by the third remote-sensing data. The parameters obtained through the calibration may reflect soil fertility, and will be utilized for nutritional management. Although estimation accuracy has still needed to be improved, the rice yield was also well estimated. These results recommended further data accumulation and more accurate locational identification to improve the estimation accuracy.

  • PDF

IMPROVING EMISSIVITY ESTIMATION IN RETRIEVING LAND SURFACE TEMPERATURE WITH MODIS DATA

  • Lin, Tang-Huang;Liu, Gin-Rong;Tsai, Fuan;Hsu, Ming-Chang
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.337-340
    • /
    • 2007
  • Many researches conducted to investigate the relationship between surface emissivity and surface temperature in the past two decades and pointed out that the emissivity play a key role in applying remote sensing data to retrieve surface temperature. The task of surface temperature estimation is so important in many research fields, such as earth energy budgets, evapotranspiration, drought, global change and heat island effect. Therefore, it is indispensable to develop an effective and accurate technique to estimate the emissivity for accurate surface temperature estimations. This study developed an improved emissivity estimation technique for the use of surface temperature retrievals with MODIS data. The result of applying this improved technique using Band 31 of MODIS shows that the accuracy of estimated surface temperatures will be improved. This study also uses MODIS data observed in 2005 to establish the relationship between the surface emissivity correction factor and NDVI. Through the use of these correction factors, the land surface temperature can be retrieved more accurate with MODIS data.

  • PDF

Satellite Remote Sensing and Earth Science -Satellite Oceanography- (위성원격탐사와 지구과학 - 위성해양학 -)

  • 윤홍주
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.51-60
    • /
    • 1999
  • Today, satellite remote sensing plays an important role as a advanced science and technology, and becomes a superpower tool of the study and research in various fields of Earth Science. UN proclaimed that 1998 was the year of the oceans, and WMO chose the title of 'Weather, Ocean and Human activity' as the principal subject of the day of the world meteorology in march 23, 1998, respectively. As previously announced, these two memories give the great meaning for satellite remote sensing in oceanography. Therefore, this study reviews satellite oceanography for many specialists in the fields of the ocean and fishery science. In future, satellite oceanography will be greatly used to observe, monitor and predict various phenomena associated with the oceans, in order to seek safety in a natural disaster, and menage and conserve the oceanic environments and resource.

Open Source Remote Sensing of ORFEO Toolbox and Its Connection to Database of PostGIS with NIX File Importing

  • Lee, Ki-Won;Kang, Sang-Goo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.361-371
    • /
    • 2010
  • In recent, interests regarding open source software for geo-spatial processing are increasing. Open source remote sensing (OSRS) is regarded as one of the progressing and advanced fields in remote sensing. Nevertheless, analyses or application cases regarding OSRS are not enough for general uses or references. In this study, three kinds of OSRS software in consideration of international popularity, types of functionalities, and development environments are taken into account: OSSIM, Opticks, and ORFEO Toolbox (OTB). First, functional comparison with respect to these is carried out on the level of the preliminary survey. According to this investigation, OTB is chosen as the most applicable OSRS software in this study. Running on OTB, NIX format importing module and database connecting module are implemented for widely general uses and further application. As for an example case, airborne image of NIX format is used to region growing segmentation algorithm in OTB, and then the results are stored and retrieved in PostGIS database to test implemented modules. Conclusively, local customization and algorithm development using OSRS software are necessary to build on-demand applications from the developers' viewpoint.

Integration of Multi-spectral Remote Sensing Images and GIS Thematic Data for Supervised Land Cover Classification

  • Jang Dong-Ho;Chung Chang-Jo F
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.315-327
    • /
    • 2004
  • Nowadays, interests in land cover classification using not only multi-sensor images but also thematic GIS information are increasing. Often, although useful GIS information for the classification is available, the traditional MLE (maximum likelihood estimation techniques) does not allow us to use the information, due to the fact that it cannot handle the GIS data properly. This paper propose two extended MLE algorithms that can integrate both remote sensing images and GIS thematic data for land-cover classification. They include modified MLE and Bayesian predictive likelihood estimation technique (BPLE) techniques that can handle both categorical GIS thematic data and remote sensing images in an integrated manner. The proposed algorithms were evaluated through supervised land-cover classification with Landsat ETM+ images and an existing land-use map in the Gongju area, Korea. As a result, the proposed method showed considerable improvements in classification accuracy, when compared with other multi-spectral classification techniques. The integration of remote sensing images and the land-use map showed that overall accuracy indicated an improvement in classification accuracy of 10.8% when using MLE, and 9.6% for the BPLE. The case study also showed that the proposed algorithms enable the extraction of the area with land-cover change. In conclusion, land cover classification results produced through the integration of various GIS spatial data and multi-spectral images, will be useful to involve complementary data to make more accurate decisions.

Aerosol Optical and Spectral Characteristics in Yellow Sand Events on April, 1998 in Seoul. Part I: Observation (분광복사계와 일사계 관측에 의한 황사 및 에어러솔의 광학적 특성 연구)

  • Hye-Sook Park;Hyo-Sang Chung;Gyun-Myeong Bag;Hong-Ju Yoon
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.3
    • /
    • pp.307-314
    • /
    • 1998
  • To examine the detectability of the yellow sand and/or aerosol from China crossing over the Yellow Sea within the range of OSMI wavelengths(400-900 nm), we have investigated the optical characteristics of aerosols in yellow sand events observed on April, 1998 in Seoul. The spectral reflectance(%) and aerosol optical thickness in the range of Visible(VIS) and near Infrared (NIR) wavelengths were derived from the measurements of solar radiation using the GER-2600 spectroradiometer and sunphotometer during the April, 1798. The average spectral reflectance for the yellow sand events is over 40% and higher around 14:30 than 12:00 LST, but that for clear days is about 20% both at 12:00 and 14:30 LST in the range of 500-900 nm. The aerosol optical thickness at 501 nm varied from 0.25 on very clear day to 1.01 during a so-called "yellow-sand" episode and that for 673 nm varied from 0.14 to 0.92, respectively.

A Review on Remote Sensing and GIS Applications to Monitor Natural Disasters in Indonesia

  • Hakim, Wahyu Luqmanul;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1303-1322
    • /
    • 2020
  • Indonesia is more prone to natural disasters due to its geological condition under the three main plates, making Indonesia experience frequent seismic activity, causing earthquakes, volcanic eruption, and tsunami. Those disasters could lead to other disasters such as landslides, floods, land subsidence, and coastal inundation. Monitoring those disasters could be essential to predict and prevent damage to the environment. We reviewed the application of remote sensing and Geographic Information System (GIS) for detecting natural disasters in the case of Indonesia, based on 43 articles. The remote sensing and GIS method will be focused on InSAR techniques, image classification, and susceptibility mapping. InSAR method has been used to monitor natural disasters affecting the deformation of the earth's surface in Indonesia, such as earthquakes, volcanic activity, and land subsidence. Monitoring landslides in Indonesia using InSAR techniques has not been found in many studies; hence it is crucial to monitor the unstable slope that leads to a landslide. Image classification techniques have been used to monitor pre-and post-natural disasters in Indonesia, such as earthquakes, tsunami, forest fires, and volcano eruptions. It has a lack of studies about the classification of flood damage in Indonesia. However, flood mapping was found in susceptibility maps, as many studies about the landslide susceptibility map in Indonesia have been conducted. However, a land subsidence susceptibility map was the one subject to be studied more to decrease land subsidence damage, considering many reported cases found about land subsidence frequently occur in several cities in Indonesia.

A Progress Status of Remote Sensing in the Korean Meteorological Society (한국기상학회 원격탐사 분야 학술 발전 현황)

  • Myoung-Hwan Ahn;Jhoon Kim;GyuWon Lee;Sang-Woo Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.197-222
    • /
    • 2023
  • Remote sensing becomes a new and core framework for the atmospheric sciences and closely related areas concerning with the ever-changing global environmental status. However, remote sensing in the Korea Meteorological Society is relatively new, where the first relevant paper is appeared in 1983, as well as is an area with relatively limited number of research groups. Here, we review and summarize some of the key progress in this area within Korea Meteorological Society focusing on the areas of satellite, radar, and ground based remote sensing such as lidar, spectrometer and sun photometer. Overall, the area is shown to have the most significant progress occur along with the acquisition of the key infra structures such as the COMS (Communication, Ocean and Meteorological Satellite) and S-band radar system led by Korea Meteorological Administration in early 2000. After that, the area has quickly developed into a status playing important roles to lead and support the overall activities in the atmospheric measurements. It is expected that the importance and role of the remote sensing will increase in the coming years.

Development of Android Smart Phone App for Analysis of Remote Sensing Images (위성영상정보 분석을 위한 안드로이드 스마트폰 앱 개발)

  • Kang, Sang-Goo;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.561-570
    • /
    • 2010
  • The purpose of this study is to develop an Android smartphone app providing analysis capabilities of remote sensing images, by using mobile browsing open sources of gvSIG, open source remote sensing software of OTB and open source DBMS of PostgreSQL. In this app, five kinds of remote sensing algorithms for filtering, segmentation, or classification are implemented, and the processed results are also stored and managed in image database to retrieve. Smartphone users can easily use their functions through graphical user interfaces of app which are internally linked to application server for image analysis processing and external DBMS. As well, a practical tiling method for smartphone environments is implemented to reduce delay time between user's requests and its processing server responses. Till now, most apps for remotely sensed image data sets are mainly concerned to image visualization, distinguished from this approach providing analysis capabilities. As the smartphone apps with remote sensing analysis functions for general users and experts are widely utilizing, remote sensing images are regarded as information resources being capable of producing actual mobile contents, not potential resources. It is expected that this study could trigger off the technological progresses and other unique attempts to develop the variety of smartphone apps for remote sensing images.

A Review on Remote Sensing Techniques and Case Studies for Active Fault Investigation (활성단층 조사에 활용되는 원격탐사 기술과 사례의 고찰)

  • Gwon, Ohsang;Son, Hyorok;Bae, Sangyeol;Park, Kiwoong;Choi, Ho-Seok;Kim, Young-Seog;Lee, Seoung-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1901-1922
    • /
    • 2021
  • Since most large earthquakes occur by reactivation of preexisting active faults, it is important to understand the locations and characteristics of active faults in terms of earthquake hazard research and earthquake disaster prevention. Recently, several remote sensing techniques are broadly used for lineament analysis performed prior to field surveys in active fault surveys. The aim of this paper is introducing simple principles and application examples of each remote sensing technique (satellite remote sensing, airborne remote sensing, InSAR, LiDAR) widely used for active fault investigation. This paper also explains the analytical methods for the slope break generated by fault activity based on GIS and the horizontal displacement of the strike-slip fault. In discussion, we would like to discuss the problems and solutions on making DEM based on aerial photography, and a new developed technique (RRIM) to overcome the problems of DEM based on aerial LiDAR. Understanding remote sensing techniques used for active fault investigation and utilizing appropriate methods depending on the situation and limitations of each remote sensing technique are important for effective active fault investigation.