• Title/Summary/Keyword: Sensible Heat

Search Result 332, Processing Time 0.024 seconds

Study on Designing and Installation Effect of Fresh Air Load Reduction System by using Underground Double Floor Space - Proposal of Numerical Model coupled Heat and Moisture Simultaneous Transfer in Hygroscopic - (지열을 이용한 공조외기부하저감(空調外氣負荷低減) 시스템의 설계 및 도입 효과에 관한 연구 - 증기 확산지배에 의한 열수분 동시 이동 수치모델의 제안 -)

  • Son, Won-tug;Choi, Young-sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.331-340
    • /
    • 2004
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we used a model for evaluation of fresh air latent heat load reduction by hygroscopic of air to earth exchange system taking into account coupled heat and moisture transfer of underground double floor space. In conclusion it shows the validity of the proposed method for a design tool and the quantitative effect of the system.

  • PDF

A study on the Thermal Characteristics of a Thermal Storage Tank for using Gravels (자갈식 축열조의 축열특성에 관한 연구)

  • Park, Jung-Won;Park, Bong-Kyu;Ahn, Sang-Kyu
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 1992
  • The purpose of this study was to investigate the fluid flow characteristics of heat storage in sensible heat storage system for use In cooling and heating of buildings. Heat storage material was gravels and experiments were performed in the condition of constant temperature. The experimental parameters were fluid velocity and size of gravels. The experimental results of the heat storage quantity and the heat storage efficiency by the variation of packing size and fluid velocity were as the follows : The maximum value of the heat storage capacity and heat storage efficiency and the minimum arriving time for maximum heat storage were observed when the packing ratio was 72.5% and the fluid velocity was 0.14m/s.

  • PDF

Seasonal Variation of the Surface Heat Budget in the Gumi Reservoir of Nakdong River (낙동강 구미 보의 수면 열수지 계절 변화)

  • Kim, Hak-Yun;Seo, Kwang-Su;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1057-1063
    • /
    • 2016
  • The heat budget is investigated in the Gumi Reservoir of the Nakdong river. In warm climate season, solar radiation effects play a important role in the change of water temperature. The features of the surface heat balance are almost derived by the latent heat flux and the solar radiation flux. On the other hand, in cold climate season, change of heat stored in the water is mainly dominated by latent and sensible heat transfer between water and air, since flux of solar radiation and loss of outgoing long wave radiation balance approximately. For the annual averages, net flux of radiation, evaporation(latent heat) loss are dominant in the Gumi reservoir. The evaporation losses are dominant from spring to early winter. This means that the Gumi reservoir rolls like a lake of thermal medium or deep depth.

Mass Transfer from Heat Exchanger for Closed Wet Cooling Tower (밀폐형 냉각탑용 열교환기에서의 물질전달)

  • Yoo, Seong-Yeon;Kim, Jin-Hyuck;Han, Kyu-Hyun;Kim, Joo-Sang;Ryu, Hae-Sung;Park, Hyoung-Joon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1119-1122
    • /
    • 2009
  • The use of cooling towers in the air conditioning systems of buildings is increasing. In closed wet cooling towers, the heat transfer between the air and surface tubes can be composed of the sensible heat transfer and the latent heat transfer. The latent heat transfer is affected by the air and spray water. This study provides a designing methodology of heat exchanger for closed wet cooling tower. The correlation equation was derived to interpret the mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental results. The results from this correlation equation showed fairly good agreement with experimental data.

  • PDF

Prediction of future hydrologic variables of Asia using RCP scenario and global hydrology model (RCP 시나리오 및 전지구 수문 모형을 활용한 아시아 미래 수문인자 예측)

  • Kim, Dawun;Kim, Daeun;Kang, Seok-koo;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.551-563
    • /
    • 2016
  • According to the 4th and 5th assessment of the Intergovernmental Panel on Climate Change (IPCC), global climate has been rapidly changing because of the human activities since Industrial Revolution. The perceived changes were appeared strongly in temperature and concentration of carbon dioxide ($CO_2$). Global average temperature has increased about $0.74^{\circ}C$ over last 100 years (IPCC, 2007) and concentration of $CO_2$ is unprecedented in at least the last 800,000 years (IPCC, 2014). These phenomena influence precipitation, evapotranspiration and soil moisture which have an important role in hydrology, and that is the reason why there is a necessity to study climate change. In this study, Asia region was selected to simulate primary energy index from 1951 to 2100. To predict future climate change effect, Common Land Model (CLM) which is used for various fields across the world was employed. The forcing data was Representative Concentration Pathway (RCP) data which is the newest greenhouse gas emission scenario published in IPCC 5th assessment. Validation of net radiation ($R_n$), sensible heat flux (H), latent heat flux (LE) for historical period was performed with 5 flux tower site-data in the region of AsiaFlux and the monthly trends of simulation results were almost equaled to observation data. The simulation results for 2006-2100 showed almost stable net radiation, slightly decreasing sensible heat flux and quite increasing latent heat flux. Especially the uptrend for RCP 8.5 has been about doubled compared to RCP 4.5 and since late 2060s, variations of net radiation and sensible heat flux would be significantly risen becoming an extreme climate condition. In a follow-up study, a simulation for energy index and hydrological index under the detailed condition will be conducted with various scenario established from this study.

Estimate of Heat Flux in the East China Sea (동지나해의 열속추정에 관한 연구)

  • KIM Young-Seup
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.1
    • /
    • pp.84-91
    • /
    • 1996
  • Heat flux of the East China Sea was estimated with the bulk method, the East China mount based on the marine meteorological data and cloud amount data observed by a satellite. Solar radiation is maximum in May and minimum in December. Its amount decreases gradually southward during the winter half year (from October to March), and increases northward during the summer half year (from April to September) due to the influence of Changma (Baiu) front. The spatial difference of long-wave radiation is relatively small, but its temporal difference is quite large, i.e., the value in February is about two times greater than that in July. The spatial patterns of sensible and latent heat fluxes reflect well the effect of current distribution in this region. The heat loss from the ocean surface is more than $830Wm^{-2}$ in winter, which is five times greater than the net radiation amount during the same period, The annual net heat flux is negative, which means heat loss from the sea surface, in the whole region over the East China Sea. The region with the largest loss of more than $400Wm^{-2}$ in January is observed over the southwestern Kyushu. The annual mean value of solar radiation, long-wave radiation, sensible and latent heat fluxes are estimated $187Wm^{-2},\;-52Wm^{-2},\;-30Wm^{-2}\;and\;-137Wm^{-2}$, respectively, consequently the East China Sea losses the energy of $32Wm^{-2}(2.48\times10^{13}W)$. Through the heat exchange between the air and the sea, the heat energy of $0.4\times10^{13}W$ is supplied from the air to the sea in A region (the Yellow Sea), $2.1\times10^{13}W$ in B region (the East China Sea) and $1.7\times10^{13}W$ in C region (the Kuroshio part), respectively.

  • PDF

An Experimental Study on the Performance of Heat Pump Assisted Batch Dryer Using HFC134a (HFC134a를 사용한 열펌프 건조기의 성능에 관한 실험적 연구)

  • Kim, Y.J.;Yim, C.S.
    • Solar Energy
    • /
    • v.17 no.2
    • /
    • pp.3-11
    • /
    • 1997
  • In conventional heat and vent dryer, both sensible and latent heat could not be recovered from the exhaust air, but this problem could be solved by introducing a heat pump to a conventional dryer, having a connection with cooling, dehumidifying and heating of heat pump. In this work, HFC134a as a substitute refrigerant of CFC12 adopted in heat pump and a batch type is also introduced. The variables affected on the system performance are holding temperature of a drying chamber, bypass air ratio, degree of superheat and refrigerant flowrate, etc. The moisture contents were decreased curvilinearly in the range of $86{\sim}75%$ on the wet basis. Under the constant drying temperature, the face velocity plays an important role to the drying performance. The COPs are increased in accordance with the air velocity, on the other hand the SMERs are gradually decreased.

  • PDF

Study on the Equilibrium Point of Heat and Mass Transfer between Liquid Desiccant and Humid Air with in the Solar Air Conditioning System

  • Sukmaji, I.C.;Rahmanto, H.;Agung, B.;Choi, K.H.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.161-167
    • /
    • 2009
  • The liquid solar air conditioning system is introduced as an alternative solution to control air condition and to save electrical energy consumption. The heat and mass transfer performances of dehumidifier/regenerator in liquid solar air conditioning system are influenced by air and desiccant condition. The application of this system, the thermal energy from the sun and inlet air are unable to control, but operation parameter of other components such as pump, fan and sensible cooling unit are able to control. The equilibrium point of heat and mass transfer are the liquid desiccant and inlet air conditions, where, the heat and mass are not transferred between the liquid desiccant and vapor air. By knowing equilibrium point of heat and mass transfer, the suitable optimal desiccant conditions for certain air condition are funded. This present experiment study is investigated the equilibrium point heat and mass transfer in various air and desiccant temperature. The benefit of equilibrium point heat and mass transfer will be helpful in choose and design proper component to optimize electrical energy consumption.

  • PDF

Effect of LiBr solution flow rates in commercial absorption chiller (상용 흡수식 냉동기에서 LiBr 수용액 유량변화에 따른 영향)

  • Choi, S.H.;Chung, B.C.;Nam, L.W.;Jurng, J.;Chin, S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.292-297
    • /
    • 2001
  • This paper discusses the effect of varying LiBr solution circuits flow rates for a direct fired double effect commercial absorption chiller in the parallel flow configuration. The effects of solution flow rates have been investigated for generator, condenser, solution heat exchanger, absorber and evaporator. According to the result of this work, it was found that sensible heat rate of generator increases and refrigerant vapor generated in that decreases when inlet solution flow rate of that increases. As solution flow rate of absorber increases, the degree of superheat increases because of decreasing solution heat exchanger efficiency. The flashing vapor at the top of absorber increases in proportion to the degree of superheat whileas decreases cooling capacity inversely.

  • PDF

Meteorological Data Integrity for Environmental Impact Assessment in Yongdam Catchment (용담댐시험유역 환경영향평가의 신뢰수준 향상을 위한 기상자료의 품질검정)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.981-988
    • /
    • 2020
  • This study presents meteorological data integrity to improve environmental quality assessment in Yongdam catchment. The study examines both extreme ranges of meteorological data measurements and data reliability which include maximum and minimum temperature, relative humidity, dew point temperature, radiation, heat flux. There were some outliers and missing data from the measurements. In addition, the latent heat flux and sensible heat flux data were not reasonable and evapotranspiration data did not match at some points. The accuracy and consistency of data stored in a database for the study were secured from the data integrity. Users need to take caution when using meteorological data from the Yongdam catchment in the preparation of water resources planning, environmental impact assessment, and natural hazards analysis.