• Title/Summary/Keyword: Sense amplifier

Search Result 79, Processing Time 0.023 seconds

The noise impacts of the open bit line and noise improvement technique for DRAM (DRAM에서 open bit line의 데이터 패턴에 따른 노이즈(noise) 영향 및 개선기법)

  • Lee, Joong-Ho
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.260-266
    • /
    • 2013
  • The open bit line is vulnerable to noise compared to the folded bit line when read/write for the DRAM. According to the increasing DRAM densities, the core circuit operating conditions is exacerbated by the noise when it comes to the open bit line 6F2(F : Feature Size) structure. In this paper, the interference effects were analyzed by the data patterns between the bit line by experiments. It was beyond the scope of existing research. 68nm Tech. 1Gb DDR2, Advan Tester used in the experiments. The noise effects appears the degrade of internal operation margin of DRAM. This paper investigates sense amplifier power line splits by experiments. The noise can be improved by 0.2ns(1.3%)~1.9ns(12.7%), when the sense amplifier power lines split. It was simulated by 68nm Technology 1Gb DDR2 modeling.

Design of Novel OTP Unit Bit and ROM Using Standard CMOS Gate Oxide Antifuse (표준 CMOS 게이트 산화막 안티퓨즈를 이용한 새로운 OTP 단위 비트와 ROM 설계)

  • Shin, Chang-Hee;Kwon, Oh-Kyong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.5
    • /
    • pp.9-14
    • /
    • 2009
  • In this paper, we proposed a novel OTP unit bit of CMOS gate oxide antifuse using the standard CMOS process without additional process. The proposed OTP unit bit is composed of 3 transistors including an NMOS gate oxide antifuse and a sense amplifier of inverter type. The layout area of the proposed OTP unit bit is $22{\mu}m^2$ similar to a conventional OTP unit bit. The programming time of the proposed OTP unit bit is 3.6msec that is improved than that of the conventional OTP unit bit because it doesn't use high voltage blocking elements such as high voltage blocking switch transistor and resistor. And the OTP array with the proposed OTP unit bit doesn't need sense amplifier and bias generation circuit that are used in a conventional OTP array because sense amplifier of inverter type is included to the proposed OTP unit bit.

Design of a High-Performance Match-Line Sense Amplifier for Selective Match-Line charging Technique (선택적 매치라인 충전기법에 사용되는 고성능 매치라인 감지 증폭기 설계)

  • Ji-Hoon Choi;Jeong-Beom Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.769-776
    • /
    • 2023
  • In this paper, we designed an MLSA(Match-line Sense Amplifier) for low-power CAM(Content Addressable Memory). By using the MLSA and precharge controller, we reduced power consumption during CAM operation by employing a selective match-line charging technique to mitigate power consumption caused by mismatch. Additionally, we further reduced power consumption due to leakage current by terminating precharge early when a mismatch occurs during the search operation. The designed circuit exhibited superior performance compared to the existing circuits, with a reduction of 6.92% and 23.30% in power consumption and propagation delay time, respectively. Moreover, it demonstrated a significant decrease of 29.92% and 52.31% in product-delay-product (PDP) and energy-delay-product (EDP). The proposed circuit was validated using SPECTRE simulation with TSMC 65nm CMOS process.

Soft Error Rate for High Density DRAM Cell (고집적 DRAM 셀에 대한 소프트 에러율)

  • Lee, Gyeong-Ho;Sin, Hyeong-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.2
    • /
    • pp.87-94
    • /
    • 2001
  • A soft error rate for DRAM was predicted in connection with the leakage current in cell capacitor. The charge in cell capacitor was decreased during the DRAM operation, and soft error retes due to the leakage current were calculated in various operation mode of DRAM. It was found that the soft error rate of the /bit mode was dominant with small leakage current, but as increasing the leakage current memory mode shown the dominant effect on soft error rate. Using the 256M grade DRAM structure it was predicted that the soft error rate was influenced by the change of the cell capacitance, bit line capacitance, and the input voltage sensitivity of sense amplifier, and these results can be used to the design of the optimum cells in the next generation DRAM development.

  • PDF

Analysis of Improvement on Delay Failures in Separated Driving-line Sense Amplifier (구동라인분리 센스앰프의 딜레이페일 개선 효과에 대한 분석)

  • Dong-Yeong Kim;Su-Yeon Kim;Je-Won Park;Sin-Wook Kim;Myoung Jin Lee
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.1-5
    • /
    • 2024
  • To improve the performance of DRAM, it is essential to reduce sensing failures caused by mismatch in SA. Unlike flip failures, delay failures can be degraded, especially when high-speed operation is required, making it a critical consideration in the design of next-generation memory. While conventional SA operates with all transistors starting amplification simultaneously, SDSA selectively activates only two transistors that output BLB, thus alleviating offset. In this paper, we validate the superior performance of SDSA in mitigating delay failures through simulations. It was confirmed that SDSA exhibits approximately a 90 % reduction in delay failures compared to conventional SA.

The 4bit Cell Array Structure of PoRAM and A Sensing Method for Drive this Structure (PoRAM의 4bit 셀 어레이 구조와 이를 동작시키기 위한 센싱 기법)

  • Kim, Jung-Ha;Lee, Sang-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.8-18
    • /
    • 2007
  • In this paper, a 4bit cell way structure of PoRAM and the sensing method to drive this structure are researched. PoRAM has a different operation from existing SRAM and DRAM. The operation is that when certain voltage is applied between top electrode and bottom electrode of PoRAM device we can classify the cell state by measuring cell current which is made by changing resistance of the cell. In the decoder selected by new-addressing method in the cell array, the row decoder is selected "High" and the column decoder is selected "Low" then certain current will flow to the bit-line. Because this current is detect, in order to make large enough current, the voltage sense amplifier is used. In this case, usually, 1-stage differential amplifier using current mirror is used. Furthermore, the detected value at the cell is current, so a diode connected NMOSFET, that is, a device resistor is used at the input port of the differential amplifier to converter current into voltage. Using this differential amplifier, we can classify the cell states, erase mode is "Low" and write mode is "High", by comparing the input value, Vin, that is a product of current value multiplied by resistor value with a reference voltage, Vref.

A Low Power Charge Recycling ROM Architecture (저 전력 전하 재활용 롬 구조)

  • Yang, Byeong-Do;Kim, Lee-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.821-827
    • /
    • 2001
  • A new low power charge-recycling ROM architecture is proposed. The charge-recycling ROM uses charge-recycling method in bit lines of ROM to save the power consumption. About 90% of the total power used in the ROM is consumed in bit lines. With the proposed method, power consumption in ROM bit lines can be reduced asymptotically to zero if the number of bit lines is infinite and the sense amplifiers detect infinitely small voltage difference. However, the real sense amplifiers cannot sense very small voltage difference. Therefore, reduction of power consumption is limited. The simulation results show that the charge-recycling ROM only consumes 13% ~ 78% of the conventional low power contact programming mask ROM.

  • PDF

Integrated Current-Mode DC-DC Buck Converter with Low-Power Control Circuit

  • Jeong, Hye-Im;Lee, Chan-Soo;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.235-241
    • /
    • 2013
  • A low power CMOS control circuit is applied in an integrated DC-DC buck converter. The integrated converter is composed of a feedback control circuit and power block with 0.35 ${\mu}m$ CMOS process. A current-sensing circuit is integrated with the sense-FET method in the control circuit. In the current-sensing circuit, a current-mirror is used for a voltage follower in order to reduce power consumption with a smaller chip-size. The N-channel MOS acts as a switching device in the current-sensing circuit where the sensing FET is in parallel with the power MOSFET. The amplifier and comparator are designed to obtain a high gain and a fast transient time. The converter offers well-controlled output and accurately sensed inductor current. Simulation work shows that the current-sensing circuit is operated with an accuracy of higher than 90% and the transient time of the error amplifier is controlled within $75{\mu}sec$. The sensing current is in the range of a few hundred ${\mu}A$ at a frequency of 0.6~2 MHz and an input voltage of 3~5 V. The output voltage is obtained as expected with the ripple ratio within 1%.

New nonvolatile unit memory cell and proposal peripheral circuit using the polymer material (폴리머 재료를 이용한 새로운 비휘발성 단위 메모리 셀과 주변회로 제안)

  • Kim, Jung-Ha;Lee, Sang-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.825-828
    • /
    • 2005
  • In this paper, we propose a new nonvolatile unit memory cell and proposal peripheral circuit using the polymer material. Memory that relies on bistable behavior- having tow states associated with different resistances at the same applied voltage - has attracted much interest because of its nonvolatile properties. Such memory may also have other merits, including simplicity of structure and manufacturing, and the small size of memory cells. We have plotted the load line graphs for the use of a polymer memory character, hence we have designed in the band-gap reference shape of a write/erase drive, and then designed in the 2-stage differential amplifier shape of a sense amplifier in the consideration of a low current characteristic of a polymer memory cell. The simulation result shows that is has high gain about 80dB by sensing the very small current.

  • PDF

The design to the periphery circuit for operaton and characteristic assessment of the Nano Floating Gate Memory (Nano Floating Gate Memory 의 동작 및 특성 평가를 위한 주변회로 설계)

  • Park, Kyung-Soo;Choi, Jae-Won;Kim, Si-Nae;Yoon, Han-Sub;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.647-648
    • /
    • 2006
  • This paper presents the design results of peripheral circuits of non-volatile memory of nano floating gate cells. The designed peripheral circuits included command decoder, decoders, sense amplifiers and oscillator, which are targeted with 0.35um technology EEPROM process for operating test and reliable test. The simulation results show each operation and test mode of output voltage for word line, bit line, well and operating of sense amplifier.

  • PDF