• Title/Summary/Keyword: Senile plaques

Search Result 29, Processing Time 0.026 seconds

Iron Can Accelerate the Conjugation Reaction between Abeta 1-40 Peptide and MDA

  • Park, Yong-Hoon;Jung, Jai-Yun;Son, Il-Hong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.108-112
    • /
    • 2009
  • Alzheimer's disease(AD) is a neurodegenerative disorder characterized pathologically by senile plaques, neurofibrillary tangles, and synapse loss. Especially, extracellular beta-amyloid (Abeta) deposition is a major pathological hallmark of Alzheimer's disease (AD). In AD senile plaques, high level of iron and car-bonylated Abeta were detected. Iron has a Lewis acid property which can increase the electrophilicity of carbonyls, which may react catalytically with nucleophiles, such as amines. Hence, this study investigated whether or not iron could promote the carbonylation of amine with malondialdehyde (MDA) in the physiological condition. As the basic study, we examined that iron might promote the conjugation reaction between propylamine, monoamine molecule and MDA in the physiological condition. As the concentration of iron increased, the fluorescence intensity produced from the conjugation reaction increased in a dose-dependent manner. Instead of propylamine, we applied the same reaction condition to Abeta 1-40 peptide, one of major components founded in AD senile plaques for the conjugation reaction. As the result, the fluorescence intensity produced from the conjugation reaction between Abeta 1-40 peptide and MDA showed the similar trend to that of the reaction used with propylamine. This study suggests that iron can accelerate the conjugation reaction of MDA to Abeta 1-40 peptide and play an another important role in deterioration of AD brain.

The Effect of Bee Venom on Acetylcholine Esterase Activity during Scopolamine Induced Memorial Impairment (봉약침액(蜂藥鍼液)이 Scopolamine으로 기억장애(記憶障碍) 유발(誘發) 시 Acetylcholine Esterase 활성에 미치는 영향(影響))

  • Song, Jeong-Yeol;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.117-127
    • /
    • 2006
  • Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disease associated with aging in the human population. This disease is characterized by the following 4 structural changes : Atrophy of the Cortex, Parasympathetic, and other neural cells, the existence of Neurofibrillary tangles (NFTs), and the accumulation of Senile plaques. NFTs and Senile plaques is known to be the index of this disease. Senile plaques disturbs the neutro transmission and depletes of Acetylcholine. So, Recovery of Acetylcholine is the primal objective for treating Alzheimer's disease. So, Inhibiting the activity of Acetylcholine Esterase (AChE), which causes the hydrolysus of acetylcholine into choline and acetate, can be seen as a key role for treating Alzheimer's disease. Increasing body of evidence has been demonstrated that Bee Venom Acupuncture (BV) could compete with complex protein involving in multiple step of $NF-_{\kappa}B$ activation and exert the anti-inflammatory potential of combined inhibition of the prostanoid and nitric oxide synthesis systems by inhibition of IKK and $NF-_{\kappa}B$. BV dose-dependently attenuated Scopolamine-induced Acetylcholine esterase activities in cerebral cortex and hippocampus of the mice brain. This study therefore suggests that BV acupuncture method may be useful for prevention of development or progression of AD.

  • PDF

The Effect of Bee Venom on Scopolamine Induced Memorial Impairment (봉약침액(蜂藥鍼液)이 Scopolamine으로 유발(誘發)된 기억(記憶) 장애(障碍)에 미치는 영향(影響))

  • Song, Jeong-Yeon;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.23 no.3
    • /
    • pp.103-115
    • /
    • 2006
  • Alzheimer's disease (AD) is the most prevalent form of neurodegenerative disease associated with aging in the human population. This disease is characterized by the following 4 structural changes : Atrophy of the Cortex, Parasympathetic, and other neural cells, the existence of Neurofibrillary tangles (NFTs), and the accumulation of Senile plaques. NFTs and Senile plaques is known to be the index of this disease. Senile plaques disturbs the neutro transmission and depletes of Acetylcholine. So, Recovery of Acetylcholine is the primal objective for treating Alzheimer's disease. So, Inhibiting the activity of Acetylcholine Esterase (AChE), which causes the hydrolysus of acetylcholine into choline and acetate, can be seen as a key role for treating Alzheimer's disease. Increasing body of evidence has been demonstrated that Bee Venom Acupuncture (BV) could compete with complex protein involving in multiple step of $NF-_{\kappa}B$ activation and exert the anti -inflammatory potential of combined inhibition of the prostanoid and nitric oxide synthesis systems by inhibition of IKK and $NF-_{\kappa}B$. The effect of BV through behavioral tests after memory impairment induced by Scopolamine. We examined the improving effect of BV on the Scopolamine (1 mg/Kg, i.p.)-induced memorial impairment using passive avoidance response and water maze tests in the mice. BV (0.84, $1.67\;{\mu}g/ml$) reversed the Scopolamine-induced memorial impairment in dose dependent manner. This study therefore suggests that BV acupuncture method may be useful for prevention of development or progression of AD.

  • PDF

Animal Models for Aging and Neurodegenerative Diseases: Brain Cell Apoptosis in the Dog and its Possible Mechanisms

  • Nakayama, Hiroyuki;Kajikawa, Satoru;Doi, Kunio
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.71-77
    • /
    • 2001
  • The brain of the aged dog possesses senile plaques and amyloid angiopathy, which characterize Alzheimer's disease brains. We have defined the dementia condition of aged dogs and examined which mechanism(s) is responsible for the condition. A series of studies revealed that the dementia condition in aged dogs is significantly related to the number of apoptotic brain cells including both neurons and glial cells, but not to the number of senile plaques. On the other hand, 5-azacytidine (5AzC) is a cytidine analogue, and is thought to induce kinds of cell differentiation possibly through hypomethylation of genomic DNA. We have revealed neuronal apoptosis induced in 5AzC-treated fetal mice and PC12 cells. The ribosomal protein L4 (rpL4) gene is expressed prior to the apoptosis in the PC12 cell system. Therefore, the involvement of the rpL4 gene expression in age-related brain cell apoptosis in dogs may contribute to the investigation of Alzheimer's dementia.

  • PDF

Searching for blue ocean of Alzheimer's disease drug discovery

  • MookJung, In-Hee
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2006.04a
    • /
    • pp.109-120
    • /
    • 2006
  • Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathological hallmarks of AD are senile plaques and neurofibrillary tangles in the brain. Major component of senile plaques is amyloid beta peptide(A$\beta$) which is derived from amyloid precursor protein (APP). A$\beta$ is generated through the sequential cleavage of App by $\beta$ - and $\gamma$-secretases. $\beta$-secretase excises the ectodomain of APP ($\beta$-APPs) to leave a 99-amino acid long C-terminal fragment (APP-C99-CTF) in the membrane. $\gamma$-secretase then cleaves this membrane-tethered APP-CTF within the transmembrane domain, so releasing A$\beta$ peptides and APP-intracellular domain (AICD). Thus, $\beta$- and $\gamma$-secretase are regarded to perform the key steps in the pathogenesis of AD and have become important therapeutic targets in the prevention and treatment of AD. Enormous efforts have been focused to develop the amyloid beta related drug for cure of AD becuase A$\beta$ is believed to be one of the major causes of AD. since major pharmaceutical companies in world wide base compete to develop new drug for AD, we have to be careful to choose the drug target to success the tough race. In the present talk, possible drug targets based on basic research results will be discussed. These molecules should be a good target for development of new drug for AD and be less competitive to have a good shape for world wide competition.

  • PDF

EROGOTHIONEINE RESCUES PCl2 CELLS FROM BETA-AMYLOID-INDUCED APOPTOTIC DEATH

  • Jang, Jung-Hee;Surh, Young-Joon
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.141.2-142
    • /
    • 2003
  • beta-Amyloid (A$\beta$) peptide is the major component of senile plaques and considered to have a causal role in the development and progression of Alzheimer's disease. There has been compelling evidence supporting that $A\beta$-induced cytotoxicity is mediated through oxidative and/or nitrosative stress. Recently, considerable attention has been focused on dietary manipulation of oxidative and/or nitrosative damage. L-Egrothioneine (EGT) is a low-molecular weight naturally occurring thiol compound of dietary origin which exists in milimolar concentrations in the brain, liver, kindney, erythrocytes, ocular tissues and in seminal fluids of mammals. (omitted)

  • PDF

REGULATION OF BETA-AMYLOID-STIMULATED PROINFLAMMATORY RESPONSES VIA MITOGEN ACTIVATED PROTEIN KINASES AND REDOX SENSITIVE TRANSCRIPTION FACTORS

  • Jang, Jung-Hee;Surh, Young-Joon
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.327.2-327.2
    • /
    • 2002
  • Inflammatory as well as oxidative tissue damage has been associated with pathophysiology of Alzheimer's disease (AD), and nonsteroidal anti-inflammatory drugs have been shown to retard the progress of AD. In this study, we have investigated the molecular mechanisms underlying oxidative and inflammatory cell death induced by beta-amyloid (Abeta), a neurotoxic peptide associated with senile plaques formed in the brains of patients with AD, in cultured PC12 cells. (omitted)

  • PDF

Effects of δ-Catenin on APP by Its Interaction with Presenilin-1

  • Dai, Weiye;Ryu, Taeyong;Kim, Hangun;Jin, Yun Hye;Cho, Young-Chang;Kim, Kwonseop
    • Molecules and Cells
    • /
    • v.42 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Alzheimer's disease (AD) is the most frequent age-related human neurological disorder. The characteristics of AD include senile plaques, neurofibrillary tangles, and loss of synapses and neurons in the brain. ${\beta}-Amyloid$ ($A{\beta}$) peptide is the predominant proteinaceous component of senile plaques. The amyloid hypothesis states that $A{\beta}$ initiates the cascade of events that result in AD. Amyloid precursor protein (APP) processing plays an important role in $A{\beta}$ production, which initiates synaptic and neuronal damage. ${\delta}-Catenin$ is known to be bound to presenilin-1 (PS-1), which is the main component of the ${\gamma}-secretase$ complex that regulates APP cleavage. Because PS-1 interacts with both APP and ${\delta}-catenin$, it is worth studying their interactive mechanism and/or effects on each other. Our immunoprecipitation data showed that there was no physical association between ${\delta}-catenin$ and APP. However, we observed that ${\delta}-catenin$ could reduce the binding between PS-1 and APP, thus decreasing the PS-1 mediated APP processing activity. Furthermore, ${\delta}-catenin$ reduced PS-1-mediated stabilization of APP. The results suggest that ${\delta}-catenin$ can influence the APP processing and its level by interacting with PS-1, which may eventually play a protective role in the degeneration of an Alzheimer's disease patient.

Epigenetic modification is linked to Alzheimer's disease: is it a maker or a marker?

  • Lee, Jung-Hee;Ryu, Hoon
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.649-655
    • /
    • 2010
  • Alzheimer's disease (AD) is the most common age-dependent neurodegenerative disorder and shows progressive memory loss and cognitive decline. Intraneuronal filaments composed of aggregated hyperphosphorylated tau protein, called neurofibrillary tangles, along with extracellular accumulations of amyloid $\beta$ protein (A$\beta$), called senile plaques, are known to be the neuropathological hallmarks of AD. In light of recent studies, epigenetic modification has emerged as one of the pathogenic mechanisms of AD. Epigenetic changes encompass an array of molecular modifications to both DNA and chromatin, including transcription factors and cofactors. In this review, we summarize how DNA methylation and changes to DNA chromatin packaging by post-translational histone modification are involved in AD. In addition, we describe the role of SIRTs, histone deacetylases, and the effect of SIRT-modulating drugs on AD. Lastly, we discuss how amyloid precursor protein (APP) intracellular domain (AICD) regulates neuronal transcription. Our understanding of the epigenomes and transcriptomes of AD may warrant future identification of novel biological markers and beneficial therapeutic targets for AD.