• Title/Summary/Keyword: Senescence pathways

Search Result 31, Processing Time 0.026 seconds

TIR-catalyzed Small Molecules: Structure and Function in Plant Immunity (TIR 촉매반응에 의해 생성된 소분자들의 식물면역반응에서의 역할)

  • Seong-Hyeon Bae;Sang-Hyun Park;Ye-Rim Cha;Dawon Jeon;Gah-Hyun Lim
    • Journal of Life Science
    • /
    • v.34 no.9
    • /
    • pp.666-672
    • /
    • 2024
  • Plants recognize pathogens through intracellular receptors that trigger defense signaling. Nucleotide-binding leucine-rich repeat (NLR) proteins within a cell specifically recognize pathogenic molecules (effectors), leading to signal transduction that ultimately triggers the cell death pathway, thereby inducing effector-triggered immunity in plants. NLR proteins are broadly categorized into two types based on their N-terminal domains: coiled-coil domain NLRs (CNLs) and toll/interleukin-1 receptor (TIR) domain NLRs (TNLs) are defined by their unique N-terminal domains. The TIR domain, which is responsible for activates nicotinamide adenine dinucleoside hydrolases (NADases), is crucial for the degradation of the NAD+ cofactor. TNL-dependent immune signaling involves lipase-like proteins known as Enhanced Disease Susceptibility 1 (EDS1) and its partners Phytoalexin Deficient 4 (PAD4) and Senescence-Associated Gene 101 (SAG101). This immune system also requires helper NLR subfamilies, such as activated disease resistance 1 (ADR1) and N requirement gene 1 (NRG1). The catalytic activity of TIR domain proteins generates various small molecules reported to activate plant's immune responses. These small molecules bind to specific sites on EDS1-PAD4 and EDS1-SAG101, inducing structural changes in the EP domain, and subsequently enabling interaction with ADR1 or NRG1. Here, we will discuss the characteristics of these small molecules and describe their relationships with protein complexes based on their structural and biochemical characteristics. We will also discuss how these small molecules can activate immune pathways.

Development of a Dynamic Ingestion Pathways Model(KORFOOD), Applicable to Korean Environment (한국 환경에 적용 가능한 동적 섭식경로 모델 (KORFOOD) 개발)

  • Hwang, Won-Tae;Kim, Byung-Woo;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.1
    • /
    • pp.9-24
    • /
    • 1993
  • The time-dependent radioecological model applicable to Korean environment has been developed in order to assess the radiological consequences following the short-term deposition of radionuclides in an accident of nuclear power plant. Time-dependent radioactivity concentrations in foodstuffs can be estimated by the model called 'KORFOOD' as well as time-dependent and time-integrated ingestion doses. Three kinds of critical radionuclides and thirteen kinds of foodstuffs were considered in this model. Dynamic variation of radioactivities were simulated by considering several effects such as deposition, weathering and washout, resuspension, root uptake, translocation, leaching, senescence, intake and excretion of soil by animals, intake and excretion of feedstuffs by animals, etc. The input data to the KORFOOD are the time of the year when the deposition occurs, the kinds of radionuclides and foodstuffs for estimation. The time-dependent specific activities in rice and the ingestion doses due to the consumption of all considered foodstuffs were calculated with deposition time using agricultural data-base in Kori region. In order to validate results of KORFOOD, the calculated results were compared with those by a leading German model, ECOSYS-87. The comparison of results shows good agreements within a factor of ten.

  • PDF

Kaposi's Sarcoma-Associated Herpesvirus Infection Modulates the Proliferation of Glioma Stem-Like Cells

  • Jeon, Hyungtaek;Kang, Yun Hee;Yoo, Seung-Min;Park, Myung-Jin;Park, Jong Bae;Lee, Seung-Hoon;Lee, Myung-Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.165-174
    • /
    • 2018
  • Glioblastoma multiforme is the most lethal malignant brain tumor. Despite many intensive studies, the prognosis of glioblastoma multiforme is currently very poor, with a median overall survival duration of 14 months and 2-year survival rates of less than 10%. Although viral infections have been emphasized as potential cofactors, their influences on pathways that support glioblastoma progression are not known. Some previous studies indicated that human Kaposi's sarcoma-associated herpesvirus (KSHV) was detected in healthy brains, and its microRNA was also detected in glioblastoma patients' plasma. However, a direct link between KSHV infection and glioblastoma is currently not known. In this study, we infected glioblastoma cells and glioma stem-like cells (GSCs) with KSHV to establish an in vitro cell model for KSHV-infected glioblastoma cells and glioma stem-like cells in order to identify virologic outcomes that overlap with markers of aggressive disease. Latently KSHV-infected glioblastoma cells and GSCs were successfully established. Additionally, using these cell models, we found that KSHV infection modulates the proliferation of glioma stem-like cells.

Study on the Anti-inflammatory Effect and Mechanism of Prunus mume Extract Regarding NF-κB (NF-κB 조절을 통한 오매추출물의 항염효과 및 작용기작에 관한 연구)

  • Seo, Won-Sang;Oh, Han-Na;Park, Woo-Jung;Um, Sang-Young;Lee, Dae-Woo;Kang, Sang-Mo
    • KSBB Journal
    • /
    • v.29 no.1
    • /
    • pp.50-57
    • /
    • 2014
  • NF-${\kappa}B$ is a transcriptional factor which is involved in many biological processes including immunity, inflammation, and cell survival. Many investigators studied on the mechanism involved in activation of NF-${\kappa}B$ signalling pathway via ubiquitination and degradation of $I{\kappa}B$ regarding skin disease. Some specific molecules including Akt, MEK, p38 MAP Kinase, Stat3, et al. represent convergence points and key regulatory proteins in signaling pathways controlling cellular events such as growth and differentiation, energy homeostasis, and the response to stress and inflammation. Ultraviolet (UV) irradiation has many adverse effects on skin, including inflammation, alteration in the extracellular matrix, cellular senescence, apoptosis and skin cancer. Prunus mume, a naturally derived plant extract, has beneficial biological activities as blood fluidity improvement, anti-fatigue action, antioxidative and free radical scavenging activities, inhibiting the motility of Helicobacter pyolri. Previous reports on various beneficial function prompted us to investigate UVB-induced or other immunostimulated biological marker regarding P. mume extract. P. mume extract suppresses UVB-induced cyclooxygenase-2 (COX-2) expression in mouse skin epidermal JB6 P+ cells. The activation of activator protein-1 and nuclear factor-${\kappa}B$ induced by UVB was dose-dependently inhibited by P. mume extract treatment. This results suggest that P. mume extracts might be used as a potential agents for protection of inflammation or UVB induced skin damage.

In vitro and in vivo Biological Responses of Proton Irradiation from MC-50 Cyclotron

  • Jung, Uhee;Eom, Hyeon Soo;Jeong, Kwon;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.223-229
    • /
    • 2012
  • In this study, we investigated the biological damage and stress responses induced by ion beam (proton beam) irradiation as a basis for the development of protective measures against space radiation. We examined the biological effects of proton beam produced by MC-50 cyclotron at KIRAMS on the cultured cells and mice. The proton beam energy used in this study was 34.9 MeV and the absorption dose rate for cells and mice were $0.509Gy\;sec^{-1}$ and $0.65Gy\;sec^{-1}$, respectively. The cell survival rates measured by plating efficiency showed the different sensitivity and dose-relationship between CHO cells and Balb/3T3 cells. HGPRT gene mutation frequency in Balb/3T3 was $15{\times}10^{-6}Gy^{-1}$, which was similar to the reported value of X-ray. When stress signaling proteins were examined in Balb/3T3 cells, $I{\kappa}B-{\alpha}$ decreased markedly whereas p53, phospho-p53, and Rb increased after proton beam irradiation, which implied that the stress signaling pathways were activated by proton beam irradiation. In addition, cellular senescence was induced in IMR-90 cells. In the experiments with C57BL/6 mouse, the immune cells (white blood cells, lymphocytes) in the peripheral blood were greatly reduced following proton beam irradiation whereas red blood cells and platelets showed relatively little change. These results can be utilized as basic data for studying the biological effects of proton beam using MC-50 cyclotron with respect to proton therapy research as well as space radiation research.

Transcriptome profiling and identification of functional genes involved in H2S response in grapevine tissue cultured plantlets

  • Ma, Qian;Yang, Jingli
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1287-1300
    • /
    • 2018
  • Hydrogen sulfide ($H_2S$), a small bioactive gas, has been proved functioning in plant growth and development as well as alleviation of abiotic stresses, which including promoting seed germination, accelerating embryonic root growth, regulating flower senescence, inducing stomatal closure, and defending drought, heat, heavy metals and osmotic stresses etc. However, the molecular functioning mechanism of $H_2S$ was still unclear. The primary objective of this research was to analyze the transcriptional differences and functional genes involved in the $H_2S$ responses. In details, 4-week-old plantlets in tissue culture of grapevine (Vitis vinifera L.) cultivar 'Zuoyouhong' were sprayed with 0.1 mM NaHS for 12 h, and then transcriptome sequencing and qRT-PCR analysis were used to study the transcriptional differences and functional genes involved in the $H_2S$ responses. Our results indicated that 650 genes were differentially expressed after $H_2S$ treatment, in which 224 genes were up-regulated and 426 genes were down-regulated. The GO enrichment analysis and KEGG enrichment analysis results indicated that the up-regulated genes after $H_2S$ treatment focused on carbon metabolism, biosynthesis of amino acids, and glycolysis/gluconeogenesis, and the down-regulated genes were mainly in metabolic pathways, biosynthesis of secondary metabolites, and plant hormone signal transduction. Analyzing the transcription factor coding genes in details, it was indicated that 10 AP2/EREBPs, 5 NACs, 3 WRKYs, 3 MYBs, and 2 bHLHs etc. transcription factor coding genes were up-regulated, while 4 MYBs, 3 OFPs, 3 bHLHs, 2 AP2/EREBPs, 2 HBs etc. transcription factor coding genes were down-regulated. Taken together, $H_2S$ increased the productions in secondary metabolites and a variety of defensive compounds to improve plant development and abiotic resistance, and extend fruits postharvest shelf life by regulating the expression of AP2/EREBPs, WRKYs, MYBs, CABs, GRIP22, FERRITINs, TPSs, UGTs, and GHs etc.

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • LEE Mi-Ock;SONG Ki-Hong;LEE Hyun-Kyung;JUNG Ji-Yoon;CHOE Vit-Nary;CHOE Sunghw
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus It is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Isolation of Cysteine Proteinase Gene (PgCysP1) from Panax ginseng and Response of This Gene to Abiotic Stresses (인삼으로부터 Cysteine Proteinase 유전자의 분리 및 환경 스트레스에 대한 반응)

  • Jeong, Dae-Young;Kim, Yu-Jin;Shim, Ju-Sun;Lee, Jung-Hye;In, Jun-Gyo;Lee, Bum-Soo;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.300-304
    • /
    • 2008
  • Cysteine proteinases play an essential role in plant growth and development but also in senescence and programmed cell death. They participate in both anabolic and catabolic processes. In addition, they are involved in signalling pathways and in the response to biotic and abiotic stresses. A cDNA clone encoding cysteine proteinase (CP) gene, designated PgCysP1, was isolated from Panax ginseng C. A. Meyer. Reverse transcriptase (RT)-PCR results showed that PgCysP1 expressed at different level in P. ginseng hairy root. Different stresses such as biotic as well as abiotic stresses triggered a significant induction of PgCysP1. The positive responses of PgCysP1 to the various stimuli suggested that PgCysP1 may help to protect the plant against reactive environmental stresses.

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.69-75
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd/dwf3 were Shown to be blocked in $D^4$ reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bri1/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRI1 could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.

  • PDF

Metabolic Engineering of the Brassinosteroid Biosynthetic Pathways (Brassinosteroid의 대사공학)

  • Lee, Mi-Ock;Song, Ki-Hong;Lee, Hyun-Kyung;Jung, Ji-Yoon;Choe, Vit-Nary;Choe, Sung-Hwa
    • Journal of Plant Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.139-144
    • /
    • 2002
  • Sterols play two major roles in plants: a bulk component in biological membranes and precursors of plant steroid hormones. Physiological effects of plant steroids, brassinosteroids (BRs), include cell elongation, cell division, stress tolerance, and senescence acceleration. Arabidopsis mutants that carry genetic defects in BR biosynthesis or its signaling display characteristic phenotypes, such as short robust inflorescences, dark-green round leaves, and sterility. Currently there are more than 100 dwarf mutants representing 7 genetic loci in Arabidopsis. Mutants of 6 loci, dwf1/dim1/cbb1, cpd/dwf3, dwf4, dwf5, det2/dwf6, dwf7 are rescued by exogenous application of BRs, whereas bri1/dwf2 shares phenotypes with the above 6 loci but are resistant to BRs. These suggest that the 6 loci are defective in BR biosynthesis, and the one locus is in BR signaling. Biochemical analyses, such as intermediate feeding tests, examining the levels of endogenous BR, and molecular cloning of the genes revealed that dwf7, dwf5, and dwf1 are defective in the three consecutive steps of sterol biosynthesis, from episterol to campesterol via 5-dehydroepisterol. Similarly, det2/dwf6, dwf4, and cpd /dwf3 were shown to be blocked in D$^4$reduction, 22a-hydroxylation, and 23 a-hydroxylation, respectively. A signaling mutant bril/dwf2 carries mutations in a Leucine-rich repeat receptor kinase. Interestingly, the bri1 mutant was shown to accumulate significant amount of BRs, suggesting that signaling and biosynthesis are dynamically coupled in Arabidopsis. Thus it is likely that transgenic plants over-expressing the rate-limiting step enzyme DWF4 as well as blocking its use by BRIl could dramatically increase the biosynthetic yield of BRs. When applied industrially, BRs will boost new sector of plant biotechnology because of its potential use as a precursor of human steroid hormones, a novel lead compound for cholesterol-lowering effects, and a various application in plant protection.