• Title/Summary/Keyword: Semiprime Ring

Search Result 82, Processing Time 0.023 seconds

Fuzzy algebraic structures of $L$-fuzzy ideals of $L$-fuzzy ring

  • Lee, Hyo-Sam
    • Journal for History of Mathematics
    • /
    • v.12 no.2
    • /
    • pp.151-158
    • /
    • 1999
  • In this paper, the concepts of semiprime $L$-fuzzy ideals and semiprimary $L$-fuzzy ideals of a $L$-fuzzy ring are introduced and some fundamental propositions proved. And we investigate the relation between fuzzy nil radical and semiprimary.

  • PDF

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, II

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.259-296
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation D : A $\rightarrow$ A such that $D(x)^2$[D(x),x] $\in$ rad(A) or [D(x),x]$D(x)^2$ $\in$ rad(A) for all x $\in$ A. In this case, we have D(A) $\subseteq$ rad(A).

  • PDF

JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS, I

  • Kim, Byung-Do
    • The Pure and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.179-201
    • /
    • 2008
  • Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D\;:\;A{\rightarrow}A$ such that $D(x)[D(x),x]^2\;{\in}\;rad(A)$ or $[D(x), x]^2 D(x)\;{\in}\;rad(A)$ for all $x\;{\in}\ A$. In this case, we have $D(A)\;{\subseteq}\;rad(A)$.

  • PDF

DERIVATIONS ON NONCOMMUTATIVE BANACH ALGEBRAS

  • Choi, Young-Ho;Lee, Eun-Hwi;Ahn, Gil-Gwon
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.305-317
    • /
    • 2000
  • It is well-known that every derivation on a commutative Banach algebra maps into its radical. In this paper we shall give the various algebraic conditions on the ring that every Jordan derivation on a noncommutative ring with suitable characteristic conditions is zero and using this result, we show that every continuous linear Jordan derivation on a noncommutative Banach algebra maps into its radical under the suitable conditions.

ON FULLY FILIAL TORSION RINGS

  • Andruszkiewicz, Ryszard Romuald;Pryszczepko, Karol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rings in which all accessible subrings are ideals are called filial. A ring R is called fully filial if all its subrings are filial (that is rings in which the relation of being an ideal is transitive). The present paper is devoted to the study of fully filial torsion rings. We prove a classification theorem for semiprime fully filial torsion rings.

REMARKS ON GENERALIZED (α, β)-DERIVATIONS IN SEMIPRIME RINGS

  • Hongan, Motoshi;ur Rehman, Nadeem
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.535-542
    • /
    • 2017
  • Let R be an associative ring and ${\alpha},{\beta}:R{\rightarrow}R$ ring homomorphisms. An additive mapping $d:R{\rightarrow}R$ is called an (${\alpha},{\beta}$)-derivation of R if $d(xy)=d(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for any $x,y{\in}R$, and an additive mapping $D:R{\rightarrow}R$ is called a generalized (${\alpha},{\beta}$)-derivation of R associated with an (${\alpha},{\beta}$)-derivation d if $D(xy)=D(x){\alpha}(y)+{\beta}(x)d(y)$ is fulfilled for all $x,y{\in}R$. In this note, we intend to generalize a theorem of Vukman [5], and a theorem of Daif and El-Sayiad [2].

ON LEFT α-MULTIPLIERS AND COMMUTATIVITY OF SEMIPRIME RINGS

  • Ali, Shakir;Huang, Shuliang
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.1
    • /
    • pp.69-76
    • /
    • 2012
  • Let R be a ring, and ${\alpha}$ be an endomorphism of R. An additive mapping H : R ${\rightarrow}$ R is called a left ${\alpha}$-multiplier (centralizer) if H(xy) = H(x)${\alpha}$(y) holds for all x,y $\in$ R. In this paper, we shall investigate the commutativity of prime and semiprime rings admitting left ${\alpha}$-multiplier satisfying any one of the properties: (i) H([x,y])-[x,y] = 0, (ii) H([x,y])+[x,y] = 0, (iii) $H(x{\circ}y)-x{\circ}y=0$, (iv) $H(x{\circ}y)+x{\circ}y=0$, (v) H(xy) = xy, (vi) H(xy) = yx, (vii) $H(x^2)=x^2$, (viii) $H(x^2)=-x^2$ for all x, y in some appropriate subset of R.