• 제목/요약/키워드: Semiconductor manufacturing

검색결과 926건 처리시간 0.031초

첨단 기술 기반 B2B 회사의 관계 네트워크에서의 공동 가치 창출을 위한 자원 및 역량 도출 (Identification of resources and competences for value co-creation in the relationship network of high-tech B2B firm)

  • 박창현;이희상
    • 한국산학기술학회논문지
    • /
    • 제15권7호
    • /
    • pp.4191-4197
    • /
    • 2014
  • 공동가치창출 현상은 B2B 및 B2C 시장 모두에서 중요한 비즈니스 전략으로 인식되고 있다. 본 연구에서는 다양한 주체들 및 복잡한 네트워크로 구성된 첨단 기술 기반의 B2B 시장에서 공동가치창출을 위한 핵심 자원 및 역량을 도출하였다. 대만의 파운드리 반도체 선두업체인 TSMC가 사례 연구로 선정되어 공급자, 고객, 파트너들간의 공동가치창출 현상에 대해 연구하였다. 관찰 연구, 내용 분석 및 TSMC 직원들과의 비구조화된 인터뷰를 통해 수집한 질적 데이터를 정성적 데이터 분석(Qualitative data analysis) 툴을 사용하여 분석하였다. 귀납적 추리 (Inductive reasoning)에 기반한 사례 연구 및 사례 연구를 바탕으로 한 이론수립을 연구방법론으로 적용하여 4가지의 핵심 자원 (재무적 자원, 지식 자원, 효율성 자원, 지적 자원)과 6가지의 핵심 역량 (관계 역량, 협력 역량, 전략적 역량, 혁신 역량, 관리 역량, 서비스 역량)을 도출하였다. 도출된 자원과 역량을 기반으로 관계 네트워크 하에서의 공동가치창출을 연구하기 위한 연구 체계를 수립하였다.

Multiple-inputs Dual-outputs Process Characterization and Optimization of HDP-CVD SiO2 Deposition

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Chun, Sang-Hyun;Han, Seung-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권3호
    • /
    • pp.135-145
    • /
    • 2011
  • Accurate process characterization and optimization are the first step for a successful advanced process control (APC), and they should be followed by continuous monitoring and control in order to run manufacturing processes most efficiently. In this paper, process characterization and recipe optimization methods with multiple outputs are presented in high density plasma-chemical vapor deposition (HDP-CVD) silicon dioxide deposition process. Five controllable process variables of Top $SiH_4$, Bottom $SiH_4$, $O_2$, Top RF Power, and Bottom RF Power, and two responses of interest, such as deposition rate and uniformity, are simultaneously considered employing both statistical response surface methodology (RSM) and neural networks (NNs) based genetic algorithm (GA). Statistically, two phases of experimental design was performed, and the established statistical models were optimized using performance index (PI). Artificial intelligently, NN process model with two outputs were established, and recipe synthesis was performed employing GA. Statistical RSM offers minimum numbers of experiment to build regression models and response surface models, but the analysis of the data need to satisfy underlying assumption and statistical data analysis capability. NN based-GA does not require any underlying assumption for data modeling; however, the selection of the input data for the model establishment is important for accurate model construction. Both statistical and artificial intelligent methods suggest competitive characterization and optimization results in HDP-CVD $SiO_2$ deposition process, and the NN based-GA method showed 26% uniformity improvement with 36% less $SiH_4$ gas usage yielding 20.8 ${\AA}/sec$ deposition rate.

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • 정연식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF

Boron 확산공정을 이용한 5,000V, 4인치 광 사이리스터의 제작 및 특성 평가 (Fabrication of 5,000V, 4-Inch Light Triggered Thyristor using Boron Diffusion Process and its Characterization)

  • 박건식;조두형;원종일;이병하;배영석;구인수
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.411-418
    • /
    • 2019
  • Light-triggered thyristors (LTTs) are essential components in high-power applications, such as HVDC transmission and several pulsed-power applications. Generally, LTT fabrication includes a deep diffusion of aluminum as a p-type dopant to form a uniform p-base region, which needs careful concern for contamination and additional facilities in silicon semiconductor manufacturing factories. We fabricated 4-inch 5,000 V LTTs with boron implantation and diffusion process as a p-type dopant. The LTT contains a main cathode region, edge termination designed with a variation of lateral doping, breakover diode, integrated resistor, photosensitive area, and dV/dt protection region. The doping concentration of each region was adjusted with different doses of boron ion implantation. The fabricated LTTs showed good light triggering characteristics for a light pulse of 905 nm and a blocking voltage (VDRM) of 6,500 V. They drove an average on-state current (ITAVM) of 2,270 A, peak nonrepetitive surge current (ITSM) of 61 kA, critical rate of rise of on-state current (di/dt) of 1,010 A/㎲, and limiting load integral (I2T) of 17 MA2s without damage to the device.

양성자 빔을 이용한 3차원 마이크로 구조물 가공 (Manufacturing of Three-dimensional Micro Structure Using Proton Beam)

  • 이성규;권원태
    • 대한기계학회논문집B
    • /
    • 제39권4호
    • /
    • pp.301-307
    • /
    • 2015
  • MC-50 사이클로트론에서 방출되는 양성자 빔은 직경이 2-3 mm 의 가우시안 분포를 가진다. 이렇게 넓게 조사되는 양성자 빔은 작은 스팟과 정밀한 위치정밀도를 요구하는 반도체 식각, 마이크로 머시닝 등에는 사용될 수 없다. 본 연구에서는 좀 더 경제적인 대안으로 양성자 빔을 마이크로 홀에 통과시켜 수십 ${\mu}m$ 의 직경을 가지도록 조형하는 방법을 제시하였다. 양성자 빔의 조형을 위하여 평균 직경 $21{\mu}m$, 두께 9mm 의 세장비 428 의 마이크로 홀을 제작하였다. 마이크로 홀과 양성자 빔을 정밀하게 정렬하여 양성자 빔을 조형하였다. 이렇게 조형된 양성자 빔을 이용하여 수십 ${\mu}m$ 크기의 마이크로 구조물의 가공성 확인 실험을 실시하였다. 또한 GEANT4 를 이용한 전산모사를 이용하여 해석한 후, 실험결과와 비교하고 분석하였다. 본 연구를 통하여 MC-50 사이클로트론이 조형 장치와 함께 20 마이크론 대의 3 차원 구조물 제작을 위한 마이크로 공정기술에의 사용 가능성을 확인하였다.

탄소나노튜브 방향성 수축 전송 방법이 CNTFET 기반 회로 성능에 미치는 영향에 관한 연구 (A Study on the Effect of Carbon Nanotube Directional Shrinking Transfer Method for the Performance of CNTFET-based Circuit)

  • 조근호
    • 문화기술의 융합
    • /
    • 제4권3호
    • /
    • pp.287-291
    • /
    • 2018
  • 차세대 반도체 소자로 관심을 받고 있는 CNTFET은 소자의 소스와 드레인 사이에 CNT를 배치시켜, 기존 MOSFET보다 작은 전압으로 전자의 ballstic 혹은 near-ballastic 이동을 가능하게 만든 반도체 소자이다. CNTFET의 성능을 높이기 위해서는 많은 수의 CNT를 CNTFET 안에 높은 밀도로 배치해야 하기 때문에 CNT의 밀도를 증가시키기 위한 다양한 공정들이 개발되고 있다. 최근, 방향성 수축 전송 방법이 개발되어 CNTFET의 전류 밀도를 150uA/um까지 향상시켜줄 수 있음을 보이고 있어, CNTFET 기반 집적회로의 구현 가능성을 높이고 있다. 본 논문에서는, 방향성 수축 전송 방법으로 CNTFET 소자를 만들 경우, CNTFET 회로의 성능이 기존 MOSFET의 성능에 비해 얼마나 향상시킬 수 있는지 그 성능을 평가할 수 있는 방안을 논의하고자 한다.

DBD 반응기에서 플라즈마 방전형태에 따른 PFCs 가스의 분해 특성 (Decomposition Characteristics of PFCs for Various Plasma Discharge Methods in Dielectric Barrier Discharge)

  • 김관태;김용호;차민석;송영훈;김석준;류정인
    • 한국대기환경학회지
    • /
    • 제20권5호
    • /
    • pp.625-632
    • /
    • 2004
  • Perfluorocompounds ($PFC_s$), such as tetrafluoromethane ($CF_4$) and hexafluoroethane ($C_2F_6$), have been widely used as plasma etching and chemical vapor deposition (CVD) gases for semiconductor manufacturing processes. Since these $PFC_s$ are known to cause a greenhouse effect intensively, there has been a growing interest in reducing $PFC_s$ emissions. Among various $CF_4$ decomposing techniques, a dielectric barrier discharge (DBD) is considered as one of a promising candidate because it has been successfully used for generating ozone ($O_3$) and decomposing nitrogen oxide (NO). Firstly, optimal concentration of oxygen for $CF_4$ decomposition was found to figure out how many primary and secondary reactions are associated with DBD process. Secondary, to find effective discharge method for $CF_4$ decomposition, a streamer and a glow mode in DBD are experimentally compared, which includes (i) coaxialcylinder DBD, (ii) DBD reactor packed with glass beads. and (iii) a glow mode operation with a helium gas. The test results showed that optimal concentration of oxygen was ranged 500 ppm~1% for treating 500 ppm of $CF_4$ and helium glow discharge was the most efficient one to decompose $CF_4$.

슬러리 공급 시스템을 이용한 화학적 기계적 연마 공정에서의 POU 필터의 성능 평가 (Evaluation of Point-Of-Use (POU) Filters Performance in Chemical Mechanical Polishing Slurry Supply System)

  • 장선재;김호중;진홍이;남미연;아툴 쿨르카르니;김태성
    • 한국입자에어로졸학회지
    • /
    • 제9권4호
    • /
    • pp.261-269
    • /
    • 2013
  • The chemical mechanical polishing (CMP) process is widely used in semiconductor manufacturing process for planarization of various materials and structures. Point-of-use (POU) filters are used in most of the CMP processes in order to reduce the unwanted micro-scratches which may result in defects. The performance of the POU filter is depends on type and size of the abrasives used during cleaning process. For this reason, there is a need to evaluate POU filters for their filtration efficiency (FE) with different types of abrasives. In this study, we developed filter test system to evaluate the FE of POU using ceria and silica abrasives (slurry). The POU filter is roll type capsule filter with retention size of 0.2 ${\mu}m$. Two POU filters of different make are evaluated for FE. We observed that both POU filters show similar filtration efficiency for silica and ceria slurry. Results reveal that the ceria slurry and the colloidal silica particle are removed not only by mechanical way but also hydrodynamic and electrostatic interaction way.

초정밀작업을 위한 6자유도 마이크로 스테이지의 개발 (Development of a 6 degrees-of-freedom micro stage for ultra precision positioning)

  • 김경찬;김수현;곽윤근
    • 대한기계학회논문집A
    • /
    • 제22권2호
    • /
    • pp.372-379
    • /
    • 1998
  • A new 6 degrees-of-freedom micro stage, based on parallel mechanisms and actuated by using piezoelectric elements, has been developed for the application of micro positioning such as semiconductor manufacturing devices, high precision optical measurement systems, and high accurate machining. The micro stage structure consists of a base platform and an upper platform(stage). The base platform can effectively generates planar motion with yaw motion, while the stage can do vertical motion with roll and pitch motions with respect to the base platform. This separated structure has an advantage of less interference among actuators. The forward and inverse kinematics of the micro stage are discussed. Also, through linearization of kinematic equations about an operating point on the assumption that the configuration of the micro stage remains essentially constant throughout a workspace is performed. To maximize the workspace of the stage relative to fixed frame, an optimal design procedure of geometric parameter is shown. Hardware description and a prototype are presented. The prototype is about 150mm in height and its base platform is approximately 94mm in diameter. The workspace of the prototype is obtained by computer simulation. Kinematic calibration procedure of the micro stage and its results are presented.

SiOC(-H) 박막 제조용 Methyltriphenylsilane 전구체 합성 및 특성분석 (Synthesis and Characterization of Methyltriphenylsilane for SiOC(-H) Thin Film)

  • 한덕영;박재현;이윤주;이정현;김수룡;김영희
    • 한국재료학회지
    • /
    • 제20권11호
    • /
    • pp.600-605
    • /
    • 2010
  • In order to meet the requirements of faster speed and higher packing density for devices in the field of semiconductor manufacturing, the development of Cu/Low k device material is explored for use in multi-layer interconnection. SiOC(-H) thin films containing alkylgroup are considered the most promising among all the other low k candidate materials for Cu interconnection, which materials are intended to replace conventional Al wiring. Their promising character is due to their thermal and mechanical properties, which are superior to those of organic materials such as porous $SiO_2$, SiOF, polyimides, and poly (arylene ether). SiOC(-H) thin films containing alkylgroup are generally prepared by PECVD method using trimethoxysilane as precursor. Nano voids in the film originating from the sterichindrance of alkylgroup lower the dielectric constant of the film. In this study, methyltriphenylsilane containing bulky substitute was prepared and characterized by using NMR, single-crystal X-ray, GC-MS, GPC, FT-IR and TGA analyses. Solid-state NMR is utilized to investigate the insoluble samples and the chemical shift of $^{29}Si$. X-ray single crystal results confirm that methyltriphenylsilane is composed of one Si molecule, three phenyl rings and one methyl molecule. When methyltriphenylsilane decomposes, it produces radicals such as phenyl, diphenyl, phenylsilane, diphenylsilane, triphenylsilane, etc. From the analytical data, methyltriphenylsilane was found to be very efficient as a CVD or PECVD precursor.