• Title/Summary/Keyword: Semiconductor laser diode

Search Result 87, Processing Time 0.022 seconds

The Improvement of Droop Characteristic of 780nm Monolithic 4-Beam Laser Diode (780nm Monolithic 4-Beam 레이저 다이오드의 Droop 특성 개선)

  • Hong, Hyun-Kwon;Kim, Ji-Ho;Ji, You-Sang;Seong, Yeong-Un;Lee, Sang-Don
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.285-287
    • /
    • 2009
  • When the laser diode is operated with continuous current, the light intensity from the laser diode deceases with time due to the temperature rise in the active layer. The phenomena, which is often called as DROOP, should be minimized in order to be used as a light source for the laser beam printer. We experimently examined the influences of the laser parameters such as threshold current, differential quantum efficiency on droop. It was found that decreasing the differential quantum efficiency of the laser diode is the effective way to minimize droop.

  • PDF

The Manufacture and Properties Analysis of Anti-Reflection Coating Thin Film of Laser Diode Mirror (레이저 다이오드 Mirror면의 Anti-Reflection 코팅 박막 제작 및 특성 분석)

  • Ki, Hyun-Chul;Kim, Sean-Hoon;Kim, Sang-Taek;Kim, Hyo-Jin;Kim, Hwe-Jong;Hong, Kyung-Jin;Min, Yong-Ki;Cho, Jae-Cheol;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.12a
    • /
    • pp.103-106
    • /
    • 2006
  • Semiconductor laser diode has a reflective facet in a both-ends side fundamentally. Laser performance for improving, Anti-Reflection and High-reflection coating on the facet of semiconductor laser diode. To prevent internal feedback from both facets for realizing superluminescent diode and reducing the reflection-induced intensity noise of laser diode, it's key techniques are AR/HR coatings. In the study AR coating film were manufactured by Ion-Assisted Deposition(IAD) system. Then manufactured coating film measurement electrical properties(L-I-V, Se, Resistor) and Optical properties (wavelength FFP)

  • PDF

8 Beam Laser Diode Development for Laser Scanning Unit (Laser Scanning Unit을 위한 8빔 레이저 다이오드 개발)

  • Song, Dae-Gwon;Park, Jong-Keun;Kim, Jae-Gyu;Park, Jung-Hyun;So, Sang-Yang;Kwak, Yoon-Seok;Yang, Min-Sik;Choi, An-Sik;Kim, Tae-Kyung
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.3
    • /
    • pp.111-117
    • /
    • 2010
  • A 780 nm monolithic individually addressable 8-beam diode laser with 10mW optical power was developed for use in a laser scanning unit. Beam to beam spacing is $30\;{\mu}m$ and an air bridge interconnection process was developed for individual operations. From electrical and optical characteristic measurements, the developed device is a suitable optical source for a high speed laser scanning unit in multi-function printing systems and laser beam printers.

Biological effects of a semiconductor diode laser on human periodontal ligament fibroblasts

  • Choi, Eun-Jeong;Yim, Ju-Young;Koo, Ki-Tae;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.3
    • /
    • pp.105-110
    • /
    • 2010
  • Purpose: It has been reported that low-level semiconductor diode lasers could enhance the wound healing process. The periodontal ligament is crucial for maintaining the tooth and surrounding tissues in periodontal wound healing. While low-level semiconductor diode lasers have been used in low-level laser therapy, there have been few reports on their effects on periodontal ligament fibroblasts (PDLFs). We performed this study to investigate the biological effects of semiconductor diode lasers on human PDLFs. Methods: Human PDLFs were cultured and irradiated with a gallium-aluminum-arsenate (GaAlAs) semiconductor diode laser of which the wavelength was 810 nm. The power output was fixed at 500 mW in the continuous wave mode with various energy fluencies, which were 1.97, 3.94, and 5.91 $J/cm^2$. A culture of PDLFs without laser irradiation was regarded as a control. Then, cells were additionally incubated in 72 hours for MTS assay and an alkaline phosphatase (ALPase) activity test. At 48 hours post-laser irradiation, western blot analysis was performed to determine extracellular signal-regulated kinase (ERK) activity. ANOVA was used to assess the significance level of the differences among groups (P<0.05). Results: At all energy fluencies of laser irradiation, PDLFs proliferation gradually increased for 72 hours without any significant differences compared with the control over the entire period taken together. However, an increment of cell proliferation significantly greater than in the control occurred between 24 and 48 hours at laser irradiation settings of 1.97 and 3.94 $J/cm^2$ (P<0.05). The highest ALPase activity was found at 48 and 72 hours post-laser irradiation with 3.94 $J/cm^2$ energy fluency (P<0.05). The phosphorylated ERK level was more prominent at 3.94 $J/cm^2$ energy fluency than in the control. Conclusions: The present study demonstrated that the GaAlAs semiconductor diode laser promoted proliferation and differentiation of human PDLFs.

III-V/Si Optical Communication Laser Diode Technology (광통신 III-V/Si 레이저 다이오드 기술 동향)

  • Kim, H.S.;Kim, D.J.;Kim, D.C.;Ko, Y.H.;Kim, K.J.;An, S.M.;Han, W.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.23-33
    • /
    • 2021
  • Two main technologies of III-V/Si laser diode for optical communication, direct epitaxial growth, and wafer bonding were studied. Until now, the wafer bonding has been vigorously studied and seems promising for the ideal III-V/Si laser. However, the wafer bonding process is still complicated and has a limit of mass production. The development of a concise and innovative integration method for silicon photonics is urgent. In the future, the demand for high-speed data processing and energy saving, as well as ultra-high density integration, will increase. Therefore, the study for the hetero-junction, which is that the III-V compound semiconductor is directly grown on Si semiconductor can overcome the current limitations and may be the goal for the ideal III-V/Si laser diode.

A widely tunable sampled-grating distributed feedback laser diode integrated with sampled-grating distributed bragg reflector (추출격자 분포 브래그 반사기가 집적된 광대역 파장가변 추출격자 분포 궤환 레이저 다이오드)

  • 김수현;정영철
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.369-374
    • /
    • 2004
  • In this paper, we propose a new tunable laser diode structure. The laser diode consists of a sampled-grating distributed feedback laser diode monolithically integrated with a sampled-grating distributed-Brags-Reflector. For a specific design, the possibility of continuous/discrete wavelength tuning over 27nm is confirmed by a numerical analysis using a split-step time domain model. Because the laser diode can be directly coupled with optical fiber without the intervention of the passive section, the laser diode exhibits higher output power than the conventional laser diode.

Thermal property evaluation of semiconductor laser (반도체 레이저의 열적 특성 평가)

  • 박경현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.79-81
    • /
    • 1990
  • Temperature distribution of laser diode chip mounted on ideal heat kink was calculated by numerical analysis. In numerical analysis, infinite difference method and Gauss-Scidel iteration was adopted on the basis of two dimensional heat conduction phenomena. As a result, temperature increase of active medium of laser diode driven at 60mA was calculated to be 1.47$^{\circ}C$

  • PDF

Blue Laser Generated by Sum Frequency (합주파에 의한 청색레이저 발생)

  • Lee Young-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.224-227
    • /
    • 2006
  • We have chained 459nm blue laser radiation generated by intracavity sum frequency generation( SFG ) due to the mixing of the 1064 nm laser output of a Nd:YVO4 pumped by diode and the 809nm radiation from higg-power semiconductor laser(500mW). The maximum blue output power of 0.95 mW was obtained using 400 mW input power of semiconductor laser at the type II phase matching condition (${\psi}=90^{\circ}\;{\theta}=90^{\circ}$). The threshold input power of blue laser generation was 120 mW.

Development of Ophthalmic Semiconductor Diode Laser System Using Cyclophotocoagualation (광응고에 의한 안과용 반도체 레이저 개발)

  • 유영종;김대욱;김상호;안세영
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.08a
    • /
    • pp.160-161
    • /
    • 2001
  • A diode laser system has been developed for the refractory glaucoma therapy. The diode lasers have merits in clinical usage including reduction of beam dispersion, higher absorption such as in melanin pigment, and lower complication in treatment. We present the system specification of laser diodes in 810mm with 3W power, which is delivered into the optical fiber core of 600${\mu}{\textrm}{m}$.

  • PDF

Fabrication process and device characterization of distributed feedback InGaAsP/InP laser diodes for optical fiber communication module (광통신 모듈용 분포 귀환형 InGaAsP/InP 레이저 다이오드 제작 및 소자 특성평가)

  • Jeon, Kyung-Nam;Kim, Keun-Joo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.131-138
    • /
    • 2011
  • We fabricated distributed feedback InGaAsP/InP laser diodes for optical fiber communication module and characterized the lasing properties in continuous wave operation. The active layer of 7-period InGaAsP(1.127 eV)/InGaAsP(0.954 eV) multi-quantum well structure was grown by the metal-organic chemical vapor deposition. The grating for waveguide was also fabricated by the implementation of the Mach-Zehender holographic method of two laser beams interference of He- Cd laser and the fabricated laser diode has the dimension of the laser length of $400{\mu}m$ and the ridge width of $1.2{\mu}m$. The laser diode shows the threshold current of 3.59 mA, the threshold voltage of 1.059 V. For the room-temperature operation with the current of 13.54 mA and the voltage of 1.12 V, the peak wavelength is about 1309.70 nm and optical power is 13.254 mW.