• Title/Summary/Keyword: Semiconductor Chip Classification

Search Result 8, Processing Time 0.024 seconds

Development of an Effective Defect Classification System for Inspection of QFN Semiconductor Packages (QFN 반도체 패키지의 외형 결함 검사를 위한 효과적인 결함 분류 시스템 개발)

  • Kim, Hyo-Jun;Lee, Jung-Seob;Joo, Hyo-Nam;Kim, Joon-Seek
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.2
    • /
    • pp.120-126
    • /
    • 2009
  • There are many different types of surface defects on semiconductor Integrated Chips (IC's) caused by various factors during manufacturing process, such as cracks, foreign materials, chip-outs, chips, and voids. These defects must be detected and classified by an inspection system for productivity improvement and effective process control. Among defects, in particular, foreign materials and chips are the most difficult ones to classify accurately. A vision system composed of a carefully designed optical system and a processing algorithm is proposed to detect and classify the defects on QFN(Quad Flat No-leads) packages. The processing algorithm uses features derived from the defect's position and brightness value in the Maximum Likelihood classifier and the optical system is designed to effectively extract the features used in the classifier. In experiments we confirm that this method gives more effective result in classifying foreign materials and chips.

  • PDF

Chip design and application of gas classification function using MLP classification method (MLP분류법을 적용한 가스분류기능의 칩 설계 및 응용)

  • 장으뜸;서용수;정완영
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.309-312
    • /
    • 2001
  • A primitive gas classification system which can classify limited species of gas was designed and simulated. The 'electronic nose' consists of an array of 4 metal oxide gas sensors with different selectivity patterns, signal collecting unit and a signal pattern recognition and decision Part in PLD(programmable logic device) chip. Sensor array consists of four commercial, tin oxide based, semiconductor type gas sensors. BP(back propagation) neutral networks with MLP(Multilayer Perceptron) structure was designed and implemented on CPLD of fifty thousand gate level chip by VHDL language for processing the input signals from 4 gas sensors and qualification of gases in air. The network contained four input units, one hidden layer with 4 neurons and output with 4 regular neurons. The 'electronic nose' system was successfully classified 4 kinds of industrial gases in computer simulation.

  • PDF

Research on Semiconductor Chip Classification and Defect Detection Using AI Deep Learning with RGBA Color Space (AI 딥러닝을 활용한 RGBA 색 공간으로 반도체 칩 분류 및 칩 이상 검출에 관한 연구)

  • Ju-Yong Cho
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.6
    • /
    • pp.15-21
    • /
    • 2024
  • In response to the recent government's AI and semiconductor talent training policy, this study proposes a method of effectively classifying semiconductor chips and detecting defects in RGBA color space using AI deep learning technology. Quality assurance and defect detection of semiconductor chips are essential to ensure the reliability and performance of electronic devices. However, traditional inspection methods mainly include visual inspection, mechanical measurement, and electrical testing, which are time-consuming, expensive for state-of-the-art equipment, and inefficient for many production environments due to inspection. To solve this problem, image analysis techniques based on deep learning are attracting attention in automated inspection systems. Through this experiment, it was confirmed that the deep learning model using RGBA color space shows excellent performance in defect detection and classification of semiconductor chips. In particular, RGBA color space including alpha channel provides more accurate and precise results for defect detection than conventional RGB color space models with less learning. The results of this experiment suggest that the RGBA color space can play an important role in the deep learning-based defect detection system, and further experiments in various datasets and conditions will expand the scope of the method's use in the future. Such a model is highly likely to contribute to the automation and quality improvement of the semiconductor manufacturing process. This study aims to improve the accuracy and efficiency of the semiconductor chip inspection process by utilizing the advantages of RGBA color space.

Design and Implementation of Content Switching Network Processor and Scalable Switch Fabric

  • Chang, You-Sung;Yi, Ju-Hwan;Oh, Hun-Seung;Lee, Seung-Wang;Kang, Moo-Kyung;Chun, Jung-Bum;Lee, Jun-Hee;Kim, Jin-Seok;Kim, Sang-Ho;Jung, Hee-Jae;Hong, Il-Sung;Kim, Yong-Hwan;Lee, Yu-Sik;Kyung, Chong-Min
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.167-174
    • /
    • 2003
  • This paper proposes a network processor especially optimized for content switching. With 2Gbps port capability, it integrates packet processor cluster, content-based classification engine and traffic manager on a single chip. A switch fabric architecture is also designed for scale-up of the network processor's capability over hundreds gigabit bandwidth. Applied in real network systems, the network processor shows wire-speed network address translator (NAT) and content-based switching performance.

A Fingerprint Identification System using Large Database (대용량 DB를 사용한 지문인식 시스템)

  • Cha, Jeong-Hee;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.203-211
    • /
    • 2005
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps; preprocessing, classification, and matching, in the classification. we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Cost Effective Mobility Anchor Point Selection Scheme for F-HMIPv6 Networks (F-HMIPv6 환경에서의 비용 효율적인 MAP 선택 기법)

  • Roh Myoung-Hwa;Jeong Choong-Kyo
    • KSCI Review
    • /
    • v.14 no.1
    • /
    • pp.265-271
    • /
    • 2006
  • In this paper, we propose a new automatic fingerprint identification system that identifies individuals in large databases. The algorithm consists of three steps: preprocessing, classification, and matching, in the classification, we present a new classification technique based on the statistical approach for directional image distribution. In matching, we also describe improved minutiae candidate pair extraction algorithm that is faster and more accurate than existing algorithm. In matching stage, we extract fingerprint minutiaes from its thinned image for accuracy, and introduce matching process using minutiae linking information. Introduction of linking information into the minutiae matching process is a simple but accurate way, which solves the problem of reference minutiae pair selection in comparison stage of two fingerprints quickly. This algorithm is invariant to translation and rotation of fingerprint. The proposed system was tested on 1000 fingerprint images from the semiconductor chip style scanner. Experimental results reveal false acceptance rate is decreased and genuine acceptance rate is increased than existing method.

  • PDF

Application of Data mining for improving and predicting yield in wafer fabrication system (데이터마이닝을 이용한 반도체 FAB공정의 수율개선 및 예측)

  • 백동현;한창희
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.157-177
    • /
    • 2003
  • This paper presents a comprehensive and successful application of data mining methodologies to improve and predict wafer yield in a semiconductor wafer fabrication system. As the wafer fabrication process is getting more complex and the volume of technological data gathered continues to be vast, it is difficult to analyze the cause of yield deterioration effectively by means of statistical or heuristic approaches. To begin with this paper applies a clustering method to automatically identify AUF (Area Uniform Failure) phenomenon from data instead of naked eye that bad chips occurs in a specific area of wafer. Next, sequential pattern analysis and classification methods are applied to and out machines and parameters that are cause of low yield, respectively. Furthermore, radial bases function method is used to predict yield of wafers that are in process. Finally, this paper demonstrates an information system, Y2R-PLUS (Yield Rapid Ramp-up, Prediction, analysis & Up Support), that is developed in order to analyze and predict wafer yield in a korea semiconductor manufacturer.

  • PDF

Recurrent Neural Network Modeling of Etch Tool Data: a Preliminary for Fault Inference via Bayesian Networks

  • Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.239-240
    • /
    • 2012
  • With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.

  • PDF