반도체 외관결함에는 발생 요인이 각각 다른 crack, foreign material, chip-out, chip, void 등이 있으며, 검사 시스템에서는 결함 유무 및 결함 분류를 수행하여 효과적인 공정관리가 가능하여야 한다. 본 논문에서는 QFN 패키지 결함의 분류를 위한 알고리즘 및 광학시스템을 제안한다. 제안한 방법에서 분류가 어려운 결함 중 하나인 foreign material 과 chip의 효과적인 분류를 위해 제안한 결함의 위치, 밝기의 특징정보(feature)를 사용한 ML(Maximum Likelihood ratio) 분류방법 및 특징정보 획득에 효과적인 광학계를 제안하였다. 실험 결과에서 분류가 어려운 foreign material과 chip에 대한 신뢰성 높은 분류성능을 보였다.
A primitive gas classification system which can classify limited species of gas was designed and simulated. The 'electronic nose' consists of an array of 4 metal oxide gas sensors with different selectivity patterns, signal collecting unit and a signal pattern recognition and decision Part in PLD(programmable logic device) chip. Sensor array consists of four commercial, tin oxide based, semiconductor type gas sensors. BP(back propagation) neutral networks with MLP(Multilayer Perceptron) structure was designed and implemented on CPLD of fifty thousand gate level chip by VHDL language for processing the input signals from 4 gas sensors and qualification of gases in air. The network contained four input units, one hidden layer with 4 neurons and output with 4 regular neurons. The 'electronic nose' system was successfully classified 4 kinds of industrial gases in computer simulation.
최근 정부의 AI 및 반도체 인재 양성 정책에 부응하여, 본 연구는 AI 딥러닝 기술을 활용하여 RGBA 색 공간에서 반도체 칩을 효과적으로 분류하고 결함을 검출하는 방법을 제안하고 있다. 반도체 칩의 품질 보증과 결함 검출은 전자 기기의 신뢰성과 성능을 보장하는 데 필수적이다. 그러나 전통적인 검사 방법은 주로 시각적 검사 와 기계 측정, 전기적 테스트를 포함하며, 이러한 방법은 시간이 많이 소요 되고, 최첨단 장비의 비용이 많이 들고 검사로 인해 많은 생산 환경에 비효율적 이라는 것이다. 이를 해결하기 위해 딥러닝 기반의 이미지 분석 기법이 자동화된 검사 시스템에서 주목받고 있다. 이번 실험을 통해 RGBA 색 공간을 활용한 딥러닝 모델이 반도체 칩의 결함 검출 및 분류에서 뛰어난 성능을 발휘함을 확인하였다. 특히 알파 채널을 포함한 RGBA 색 공간이 기존 RGB 색 공간 모델보다 결함 검출에 있어 더 정확하고 정밀한 결과를 적은 학습으로도 제공한다. 이번 실험 결과는 RGBA 색 공간이 딥러닝 기반 결함 검출 시스템에서 중요한 역할을 할 수 있음을 시사하며, 향후 다양한 데이터셋과 조건에서의 추가 실험을 통해 이 방법의 활용 범위를 넓힐 수 있을 것이다. 이러한 모델은 반도체 제조 공정의 자동화와 품질 향상에 기여할 가능성이 크다. 본 연구는 RGBA 색 공간의 장점을 활용하여 반도체 칩 검사 과정의 정확성과 효율성을 향상시키고자 한다.
JSTS:Journal of Semiconductor Technology and Science
/
제3권4호
/
pp.167-174
/
2003
This paper proposes a network processor especially optimized for content switching. With 2Gbps port capability, it integrates packet processor cluster, content-based classification engine and traffic manager on a single chip. A switch fabric architecture is also designed for scale-up of the network processor's capability over hundreds gigabit bandwidth. Applied in real network systems, the network processor shows wire-speed network address translator (NAT) and content-based switching performance.
본 논문에서는 대용량 DB에서 개인을 인식하는 새로운 자동 지문인식 시스템을 제안한다. 시스템은 전처리, 분류, 매칭의 3단계로 구성되는데, 분류단계에서는 방향성 이미지 분포의 통계적인 접근 방법에 기반한 새로운 분류기법을 제안하였고, 정합단계에서는 기존 알고리즘보다 더 빠르고 정확한, 개선된 특징점 후보쌍 추출 알고리즘을 제안하였다. 정확성을 위해 정합 단계에서 세선화된 이미지로부터 지문의 특징점을 추출하고 특징점의 연결정보를 사용한 정합과정을 소개한다. 특징점 정합과정에서 연결정보를 사용하는 것은 간단하지만 정확한 방법이며, 두 지문의 비교단계에서 빠르게 기준 특징점 쌍을 선택하는 문제를 해결해 준다. 알고리즘은 지문의 회전과 이동에 무관하다. 제안한 시스템은 반도체 칩방식 입력장치로부터 획득한 1000개의 지문영상으로 실험하였으며, 실험결과는 제안한 방법이 기존방법보다 오인식율은 줄어들고 정확도는 증가하였음을 보여준다.
F-HMIPv6(Fast-Hierarchical Mobile IP version 6) 네트워크에서는 단말의 이동을 관리하기 위해 MAP(Mobility Anchor Point)를 사용한다. 현재는 매크로 핸드오프 발생 시 단말로부터 가장 멀리 떨어져있는 MAP을 선택하는 기법을 사용하고 있다. 그러나 이 경우 하나의 큰 MAP으로 전체 부하가 몰리는 문제와 이동 단말과 MAP간의 긴 거리로 인해 통신 비용이 증가하는 문제가 있다. 이 연구에서는 단말의 이동속도와 패킷 전송률을 고려하여 통신 비용을 최소화 하는 비용 효율적인 MAP을 선택 기법을 제안한다. 이를 위해 통신 비용을 바인딩 업데이트 비용과 데이터 패킷 전달 비용으로 구분하고 이 통신 비용을 최소화하는 MAP의 크기를 수식으로 표현한다.
본 논문은 반도체 FAB공정의 수율개선 및 예측을 위해 데이터마이닝 기법을 적용한 사례를 소개한다. FAB 공정의 복잡성과 생산현장에서 수집되는 방대한 기술데이터로 인해 기존의 통계적 방법이나 엔지니어의 경험적 분석 방법만으로는 미처 파악하지 못하는 수율 저하 요인이 상당 수 존재한다. 본 논문은 먼저, FAB공정을 마친 웨이퍼에 불량 칩(chip)이 지리적으로 특정 위치에 집중적으로 발생하는 현상을 육안검사 대신 군집분석을 이용하여 데이터로부터 자동 판별할 수 있는 방법을 제안한다. 다음으로 연속패턴분석, 분류분석, RBF(Radial Base Function) 기법을 적용하여 수율 저하의 원인이 되는 문제 장비나 문제 파라미터를 신속, 정확하게 파악할 수 있도록 해 줄 뿐만 아니라 공정 진행 중인 제품의 미래 수율을 예측할 수 있도록 지원하는 방법을 제안한다. 또한 위 기법들을 반도체 FAB공정을 대상으로 국내 모 반도체 회사에서 정보시스템으로 구현한 Y2R-PLUS (Yield Rapid Ramp-up, Prediction, analysis & Up Support) 시스템을 소개한다.
Nawaz, Javeria;Arshad, Muhammad Zeeshan;Park, Jin-Su;Shin, Sung-Won;Hong, Sang-Jeen
한국진공학회:학술대회논문집
/
한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
/
pp.239-240
/
2012
With advancements in semiconductor device technologies, manufacturing processes are getting more complex and it became more difficult to maintain tighter process control. As the number of processing step increased for fabricating complex chip structure, potential fault inducing factors are prevail and their allowable margins are continuously reduced. Therefore, one of the key to success in semiconductor manufacturing is highly accurate and fast fault detection and classification at each stage to reduce any undesired variation and identify the cause of the fault. Sensors in the equipment are used to monitor the state of the process. The idea is that whenever there is a fault in the process, it appears as some variation in the output from any of the sensors monitoring the process. These sensors may refer to information about pressure, RF power or gas flow and etc. in the equipment. By relating the data from these sensors to the process condition, any abnormality in the process can be identified, but it still holds some degree of certainty. Our hypothesis in this research is to capture the features of equipment condition data from healthy process library. We can use the health data as a reference for upcoming processes and this is made possible by mathematically modeling of the acquired data. In this work we demonstrate the use of recurrent neural network (RNN) has been used. RNN is a dynamic neural network that makes the output as a function of previous inputs. In our case we have etch equipment tool set data, consisting of 22 parameters and 9 runs. This data was first synchronized using the Dynamic Time Warping (DTW) algorithm. The synchronized data from the sensors in the form of time series is then provided to RNN which trains and restructures itself according to the input and then predicts a value, one step ahead in time, which depends on the past values of data. Eight runs of process data were used to train the network, while in order to check the performance of the network, one run was used as a test input. Next, a mean squared error based probability generating function was used to assign probability of fault in each parameter by comparing the predicted and actual values of the data. In the future we will make use of the Bayesian Networks to classify the detected faults. Bayesian Networks use directed acyclic graphs that relate different parameters through their conditional dependencies in order to find inference among them. The relationships between parameters from the data will be used to generate the structure of Bayesian Network and then posterior probability of different faults will be calculated using inference algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.